إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
اضرب كلا الطرفين في .
خطوة 2
خطوة 2.1
بسّط الطرف الأيسر.
خطوة 2.1.1
بسّط .
خطوة 2.1.1.1
طبّق خاصية التوزيع.
خطوة 2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 2.1.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.1.1.2.2
ألغِ العامل المشترك.
خطوة 2.1.1.2.3
أعِد كتابة العبارة.
خطوة 2.2
بسّط الطرف الأيمن.
خطوة 2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
أعِد كتابة العبارة.
خطوة 3
خطوة 3.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.1.1
أضف إلى كلا المتعادلين.
خطوة 3.1.2
أضف و.
خطوة 3.2
اقسِم كل حد في على وبسّط.
خطوة 3.2.1
اقسِم كل حد في على .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.2
اقسِم على .
خطوة 3.2.3
بسّط الطرف الأيمن.
خطوة 3.2.3.1
اقسِم على .
خطوة 4
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 5
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 6
خطوة 6.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.1.3
الطرف الأيسر ليس أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 6.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.2.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 6.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.3.3
الطرف الأيسر ليس أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 6.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
خطأ
صحيحة
خطأ
خطأ
صحيحة
خطأ
خطوة 7
يتكون الحل من جميع الفترات الصحيحة.
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
صيغة التباين:
ترميز الفترة:
خطوة 9