إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
اطرح من .
خطوة 3.2.2
اطرح من كلا المتعادلين.
خطوة 3.2.3
اقسِم كل حد في على وبسّط.
خطوة 3.2.3.1
اقسِم كل حد في على .
خطوة 3.2.3.2
بسّط الطرف الأيسر.
خطوة 3.2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.3.2.1.2
اقسِم على .
خطوة 3.2.3.3
بسّط الطرف الأيمن.
خطوة 3.2.3.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 6
خطوة 6.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 6.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.2.3
الطرف الأيسر ليس أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 6.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.3.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 6.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
صحيحة
صحيحة
خطأ
صحيحة
خطوة 7
يتكون الحل من جميع الفترات الصحيحة.
أو
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
صيغة التباين:
ترميز الفترة:
خطوة 9