الرياضيات المتناهية الأمثلة

Resolver para x لوغاريتم x-1+ للأساس 5 لوغاريتم x+119=4 للأساس 5
خطوة 1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2
طبّق خاصية التوزيع.
خطوة 1.2.3
طبّق خاصية التوزيع.
خطوة 1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
اضرب في .
خطوة 1.3.1.2
انقُل إلى يسار .
خطوة 1.3.1.3
أعِد كتابة بالصيغة .
خطوة 1.3.1.4
اضرب في .
خطوة 1.3.2
اطرح من .
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
ارفع إلى القوة .
خطوة 3.3
اطرح من كلا المتعادلين.
خطوة 3.4
اطرح من .
خطوة 3.5
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.5.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.6
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7.2
أضف إلى كلا المتعادلين.
خطوة 3.8
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.8.2
اطرح من كلا المتعادلين.
خطوة 3.9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبعِد الحلول التي لا تجعل صحيحة.