إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
أنشئ عبارات متكافئة في المعادلة بحيث تكون جميعها ذات أساسات متساوية.
خطوة 2
بما أن العددين متساويان في الأساس، إذن تتساوى العبارتان فقط إذا تساوى الأُسان أيضًا.
خطوة 3
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.2.1
أخرِج العامل من .
خطوة 3.2.1.1
أعِد ترتيب و.
خطوة 3.2.1.2
أخرِج العامل من .
خطوة 3.2.1.3
أخرِج العامل من .
خطوة 3.2.1.4
أعِد كتابة بالصيغة .
خطوة 3.2.1.5
أخرِج العامل من .
خطوة 3.2.1.6
أخرِج العامل من .
خطوة 3.2.2
حلّل إلى عوامل.
خطوة 3.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 3.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أضف إلى كلا المتعادلين.
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
أضف إلى كلا المتعادلين.
خطوة 3.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.