إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
خطوة 2.1
أعِد كتابة بالصيغة .
خطوة 2.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 4
خطوة 4.1
اطرح من كلا طرفي المتباينة.
خطوة 4.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.1
اقسِم كل حد في على . وعند ضرب كلا طرفي المتباينة في قيمة سالبة أو قسمتهما عليها، اعكس اتجاه علامة المتباينة.
خطوة 4.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.2.2.2
اقسِم على .
خطوة 4.2.3
بسّط الطرف الأيمن.
خطوة 4.2.3.1
اقسِم على .
خطوة 5
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 6
خطوة 6.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2.2
اطرح من كلا المتعادلين.
خطوة 6.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.3.2
أضف إلى كلا المتعادلين.
خطوة 6.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6.5
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 6.6
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
خطوة 6.6.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.6.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.6.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.6.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 6.6.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.6.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.6.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.6.2.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 6.6.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 6.6.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 6.6.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 6.6.3.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 6.6.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
صحيحة
صحيحة
خطأ
صحيحة
خطوة 6.7
يتكون الحل من جميع الفترات الصحيحة.
أو
أو
خطوة 7
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 8
المدى هو مجموعة جميع قيم الصالحة. استخدِم الرسم البياني لإيجاد المدى.
لا يوجد حل
خطوة 9
حدد النطاق والمدى.
لا يوجد حل
خطوة 10