الرياضيات المتناهية الأمثلة

إيجاد مجال تعريف حاصل قسمة التابعين f(x)=3x+30 , g(x)=x^2+20
,
خطوة 1
أوجِد ناتج قسمة الدالتين.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استبدِل محددات الدوال بالدوال الفعلية في .
خطوة 1.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
أخرِج العامل من .
خطوة 1.2.3
أخرِج العامل من .
خطوة 2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أعِد كتابة بالصيغة .
خطوة 3.3.2
أعِد كتابة بالصيغة .
خطوة 3.3.3
أعِد كتابة بالصيغة .
خطوة 3.3.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.4.1
أخرِج العامل من .
خطوة 3.3.4.2
أعِد كتابة بالصيغة .
خطوة 3.3.5
أخرِج الحدود من تحت الجذر.
خطوة 3.3.6
انقُل إلى يسار .
خطوة 3.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
النطاق هو جميع الأعداد الحقيقية.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 5