الرياضيات المتناهية الأمثلة

أوجد ميل كل معادلة x-3y=9 , 3x-y=7
,
خطوة 1
أعِد الكتابة بصيغة تقاطع الميل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 1.2
اطرح من كلا المتعادلين.
خطوة 1.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اقسِم كل حد في على .
خطوة 1.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.3.2.1.2
اقسِم على .
خطوة 1.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1
اقسِم على .
خطوة 1.3.3.1.2
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 1.4
اكتب بصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أعِد ترتيب و.
خطوة 1.4.2
أعِد ترتيب الحدود.
خطوة 2
باستخدام صيغة تقاطع الميل، الميل هو .
خطوة 3
أعِد الكتابة بصيغة تقاطع الميل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اقسِم كل حد في على .
خطوة 3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.3.2.2
اقسِم على .
خطوة 3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.1
اقسِم على .
خطوة 3.3.3.1.2
انقُل العدد سالب واحد من قاسم .
خطوة 3.3.3.1.3
أعِد كتابة بالصيغة .
خطوة 3.3.3.1.4
اضرب في .
خطوة 3.4
أعِد ترتيب و.
خطوة 4
باستخدام صيغة تقاطع الميل، الميل هو .
خطوة 5
عيّن سلسلة المعادلات لإيجاد أي نقاط تقاطع.
خطوة 6
أوجِد حل سلسلة المعادلات لإيجاد نقطة التقاطع.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أضف إلى كلا المتعادلين.
خطوة 6.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 6.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1.1
طبّق خاصية التوزيع.
خطوة 6.2.2.1.1.2
اضرب في .
خطوة 6.2.2.1.1.3
اضرب في .
خطوة 6.2.2.1.2
اطرح من .
خطوة 6.3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1.1
اطرح من كلا المتعادلين.
خطوة 6.3.1.2
اطرح من .
خطوة 6.3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
اقسِم كل حد في على .
خطوة 6.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.2.2.1.2
اقسِم على .
خطوة 6.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.3.1.1
أخرِج العامل من .
خطوة 6.3.2.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.3.1.2.1
أخرِج العامل من .
خطوة 6.3.2.3.1.2.2
ألغِ العامل المشترك.
خطوة 6.3.2.3.1.2.3
أعِد كتابة العبارة.
خطوة 6.3.2.3.2
انقُل السالب أمام الكسر.
خطوة 6.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 6.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1.1.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1.1.1.1
اضرب في .
خطوة 6.4.2.1.1.1.2
اجمع و.
خطوة 6.4.2.1.1.1.3
اضرب في .
خطوة 6.4.2.1.1.2
انقُل السالب أمام الكسر.
خطوة 6.4.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.4.2.1.3
اجمع و.
خطوة 6.4.2.1.4
اجمع البسوط على القاسم المشترك.
خطوة 6.4.2.1.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1.5.1
اضرب في .
خطوة 6.4.2.1.5.2
اطرح من .
خطوة 6.5
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
نظرًا إلى اختلاف الميول، سيكون للخطوط نقطة تقاطع واحدة فقط.
خطوة 8