إدخال مسألة...
الرياضيات المتناهية الأمثلة
,
خطوة 1
خطوة 1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 1.2
اطرح من كلا المتعادلين.
خطوة 1.3
اقسِم كل حد في على وبسّط.
خطوة 1.3.1
اقسِم كل حد في على .
خطوة 1.3.2
بسّط الطرف الأيسر.
خطوة 1.3.2.1
ألغِ العامل المشترك لـ .
خطوة 1.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.3.2.1.2
اقسِم على .
خطوة 1.3.3
بسّط الطرف الأيمن.
خطوة 1.3.3.1
انقُل السالب أمام الكسر.
خطوة 1.4
اكتب بصيغة .
خطوة 1.4.1
أعِد ترتيب و.
خطوة 1.4.2
أعِد ترتيب الحدود.
خطوة 1.4.3
احذِف الأقواس.
خطوة 2
باستخدام صيغة تقاطع الميل، الميل هو .
خطوة 3
لإيجاد معادلة المستقيم الموازي، لا بد أن يكون الميلان متساويين. أوجِد الخط المستقيم الموازي باستخدام صيغة ميل النقطة.
خطوة 4
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 5
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 6
خطوة 6.1
بسّط .
خطوة 6.1.1
أعِد الكتابة.
خطوة 6.1.2
بسّط الحدود.
خطوة 6.1.2.1
طبّق خاصية التوزيع.
خطوة 6.1.2.2
اجمع و.
خطوة 6.1.2.3
ألغِ العامل المشترك لـ .
خطوة 6.1.2.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 6.1.2.3.2
أخرِج العامل من .
خطوة 6.1.2.3.3
ألغِ العامل المشترك.
خطوة 6.1.2.3.4
أعِد كتابة العبارة.
خطوة 6.1.2.4
اضرب في .
خطوة 6.1.3
انقُل إلى يسار .
خطوة 6.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 6.2.1
أضف إلى كلا المتعادلين.
خطوة 6.2.2
جمّع الحدود المتعاكسة في .
خطوة 6.2.2.1
أضف و.
خطوة 6.2.2.2
أضف و.
خطوة 6.3
اكتب بصيغة .
خطوة 6.3.1
أعِد ترتيب الحدود.
خطوة 6.3.2
احذِف الأقواس.
خطوة 7