إدخال مسألة...
الرياضيات المتناهية الأمثلة
,
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط كل حد.
خطوة 2.2.1.1
طبّق خاصية التوزيع.
خطوة 2.2.1.2
اضرب في .
خطوة 2.2.1.3
اضرب في .
خطوة 2.2.1.4
طبّق خاصية التوزيع.
خطوة 2.2.1.5
اضرب في بجمع الأُسس.
خطوة 2.2.1.5.1
انقُل .
خطوة 2.2.1.5.2
اضرب في .
خطوة 3
خطوة 3.1
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.1.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 3.1.2
حلّل إلى عوامل بالتجميع.
خطوة 3.1.2.1
أعِد ترتيب الحدود.
خطوة 3.1.2.2
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.1.2.2.1
أخرِج العامل من .
خطوة 3.1.2.2.2
أعِد كتابة في صورة زائد
خطوة 3.1.2.2.3
طبّق خاصية التوزيع.
خطوة 3.1.2.3
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.1.2.3.1
جمّع أول حدين وآخر حدين.
خطوة 3.1.2.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.1.2.4
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.2
أوجِد قيمة في .
خطوة 3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.3.2.2.1
اقسِم كل حد في على .
خطوة 3.3.2.2.2
بسّط الطرف الأيسر.
خطوة 3.3.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.2.1.2
اقسِم على .
خطوة 3.3.2.2.3
بسّط الطرف الأيمن.
خطوة 3.3.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أوجِد قيمة في .
خطوة 3.4.2.1
أضف إلى كلا المتعادلين.
خطوة 3.4.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.4.2.2.1
اقسِم كل حد في على .
خطوة 3.4.2.2.2
بسّط الطرف الأيسر.
خطوة 3.4.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.4.2.2.2.1.2
اقسِم على .
خطوة 3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط الطرف الأيمن.
خطوة 4.2.1
بسّط .
خطوة 4.2.1.1
بسّط كل حد.
خطوة 4.2.1.1.1
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.2.1.1.1.2
أخرِج العامل من .
خطوة 4.2.1.1.1.3
ألغِ العامل المشترك.
خطوة 4.2.1.1.1.4
أعِد كتابة العبارة.
خطوة 4.2.1.1.2
اضرب في .
خطوة 4.2.1.2
أضف و.
خطوة 5
خطوة 5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 5.2
بسّط الطرف الأيمن.
خطوة 5.2.1
بسّط .
خطوة 5.2.1.1
ألغِ العامل المشترك لـ .
خطوة 5.2.1.1.1
أخرِج العامل من .
خطوة 5.2.1.1.2
ألغِ العامل المشترك.
خطوة 5.2.1.1.3
أعِد كتابة العبارة.
خطوة 5.2.1.2
اطرح من .
خطوة 6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 8