إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
يأخذ المتغير العشوائي المنفصل مجموعة من القيم المنفصلة (مثل ، و، و...). يخصص توزيع احتمالاته احتمالاً لكل قيمة ممكنة . لكل ، تقع الاحتمالية بين و (مع شمول كليهما) ويكون مجموع الاحتمالات لجميع قيم الممكنة يساوي .
1. لكل ، .
2. .
خطوة 1.2
ليس أصغر من أو يساوي ، وهو ما لا يتوافق مع الخاصية الأولى لتوزيع الاحتمالات.
ليست أقل من أو تساوي
خطوة 1.3
تقع في النطاق الممتد من إلى ، وهذا يتوافق مع الخاصية الأولى لتوزيع الاحتمالات.
تقع في النطاق الممتد من إلى
خطوة 1.4
تقع في النطاق الممتد من إلى ، وهذا يتوافق مع الخاصية الأولى لتوزيع الاحتمالات.
تقع في النطاق الممتد من إلى
خطوة 1.5
تقع في النطاق الممتد من إلى ، وهذا يتوافق مع الخاصية الأولى لتوزيع الاحتمالات.
تقع في النطاق الممتد من إلى
خطوة 1.6
تقع في النطاق الممتد من إلى ، وهذا يتوافق مع الخاصية الأولى لتوزيع الاحتمالات.
تقع في النطاق الممتد من إلى
خطوة 1.7
لا تقع الاحتمالية في نطاق الأعداد بين و بما في ذلك كلاهما بالنسبة إلى جميع قيم ، وهو ما لا يتوافق مع الخاصية الأولى لتوزيع الاحتمالات.
لا يستوفي الجدول خاصيتَي توزيع الاحتمالات
لا يستوفي الجدول خاصيتَي توزيع الاحتمالات
خطوة 2
لا يستوفي الجدول خاصيتَي توزيع الاحتمالات، ما يعني أنه لا يمكن إيجاد الانحراف المعياري باستخدام الجدول المحدد.
لا يمكن إيجاد الانحراف المعياري