إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
أضف إلى كلا المتعادلين.
خطوة 3
خطوة 3.1
اقسِم كل حد في على .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
اقسِم على .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 3.3.2
اضرب .
خطوة 3.3.2.1
اضرب في .
خطوة 3.3.2.2
اضرب في .
خطوة 4
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 5
خطوة 5.1
احسِب قيمة .
خطوة 6
خطوة 6.1
اقسِم كل حد في على .
خطوة 6.2
بسّط الطرف الأيسر.
خطوة 6.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.1.2
اقسِم على .
خطوة 6.3
بسّط الطرف الأيمن.
خطوة 6.3.1
اقسِم على .
خطوة 7
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 8
خطوة 8.1
بسّط.
خطوة 8.1.1
اضرب في .
خطوة 8.1.2
اطرح من .
خطوة 8.2
اقسِم كل حد في على وبسّط.
خطوة 8.2.1
اقسِم كل حد في على .
خطوة 8.2.2
بسّط الطرف الأيسر.
خطوة 8.2.2.1
ألغِ العامل المشترك لـ .
خطوة 8.2.2.1.1
ألغِ العامل المشترك.
خطوة 8.2.2.1.2
اقسِم على .
خطوة 8.2.3
بسّط الطرف الأيمن.
خطوة 8.2.3.1
اقسِم على .
خطوة 9
خطوة 9.1
يمكن حساب فترة الدالة باستخدام .
خطوة 9.2
استبدِل بـ في القاعدة للفترة.
خطوة 9.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 10
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح