إدخال مسألة...
الكيمياء الأمثلة
خطوة 1
خطوة 1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.1.1
طبّق خاصية التوزيع.
خطوة 1.1.2
طبّق خاصية التوزيع.
خطوة 1.1.3
طبّق خاصية التوزيع.
خطوة 1.2
بسّط ووحّد الحدود المتشابهة.
خطوة 1.2.1
بسّط كل حد.
خطوة 1.2.1.1
اضرب في .
خطوة 1.2.1.2
اضرب في .
خطوة 1.2.1.3
اضرب في .
خطوة 1.2.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2.1.5
اضرب في بجمع الأُسس.
خطوة 1.2.1.5.1
انقُل .
خطوة 1.2.1.5.2
اضرب في .
خطوة 1.2.1.6
اضرب في .
خطوة 1.2.2
اطرح من .
خطوة 2
اطرح من كلا المتعادلين.
خطوة 3
اطرح من .
خطوة 4
خطوة 4.1
أخرِج العامل من .
خطوة 4.1.1
أخرِج العامل من .
خطوة 4.1.2
أخرِج العامل من .
خطوة 4.1.3
أخرِج العامل من .
خطوة 4.1.4
أخرِج العامل من .
خطوة 4.1.5
أخرِج العامل من .
خطوة 4.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 4.3
حلّل إلى عوامل بالتجميع.
خطوة 4.3.1
أعِد ترتيب الحدود.
خطوة 4.3.2
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 4.3.2.1
أخرِج العامل من .
خطوة 4.3.2.2
أعِد كتابة في صورة زائد
خطوة 4.3.2.3
طبّق خاصية التوزيع.
خطوة 4.3.3
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.3.3.1
جمّع أول حدين وآخر حدين.
خطوة 4.3.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.3.4
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4.4
حلّل إلى عوامل.
خطوة 4.4.1
استبدِل كافة حالات حدوث بـ .
خطوة 4.4.2
احذِف الأقواس غير الضرورية.
خطوة 5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أضف إلى كلا المتعادلين.
خطوة 7
خطوة 7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.2
أوجِد قيمة في .
خطوة 7.2.1
أضف إلى كلا المتعادلين.
خطوة 7.2.2
اقسِم كل حد في على وبسّط.
خطوة 7.2.2.1
اقسِم كل حد في على .
خطوة 7.2.2.2
بسّط الطرف الأيسر.
خطوة 7.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 7.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 7.2.2.2.1.2
اقسِم على .
خطوة 8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 9
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: