إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
استخدِم لكتابة في صورة .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
استبدِل كافة حالات حدوث بـ .
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
اجمع و.
اجمع البسوط على القاسم المشترك.
بسّط بَسْط الكسر.
اضرب في .
اطرح من .
اجمع الكسور.
انقُل السالب أمام الكسر.
اجمع و.
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
بسّط.
أعِد ترتيب عوامل .
اضرب في .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
ألغِ العوامل المشتركة.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
Step 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
اضرب الأُسس في .
طبّق قاعدة القوة واضرب الأُسس، .
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
بسّط.
أوجِد المشتقة.
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط العبارة.
أضف و.
اضرب في .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
استبدِل كافة حالات حدوث بـ .
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
اجمع و.
اجمع البسوط على القاسم المشترك.
بسّط بَسْط الكسر.
اضرب في .
اطرح من .
اجمع الكسور.
انقُل السالب أمام الكسر.
اجمع و.
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
بسّط.
طبّق خاصية التوزيع.
بسّط بَسْط الكسر.
لنفترض أن . استبدِل بجميع حالات حدوث .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
بسّط.
طبّق خاصية التوزيع.
اضرب في .
استبدِل كافة حالات حدوث بـ .
بسّط.
وسّع بضرب كل حد في العبارة الأولى في كل حد في العبارة الثانية.
جمّع الحدود المتعاكسة في .
أعِد ترتيب العوامل في الحدين و.
أضف و.
أضف و.
أعِد ترتيب العوامل في الحدين و.
اطرح من .
أضف و.
بسّط كل حد.
اضرب في بجمع الأُسس.
استخدِم قاعدة القوة لتجميع الأُسس.
اجمع البسوط على القاسم المشترك.
أضف و.
اقسِم على .
بسّط .
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
اضرب في بجمع الأُسس.
انقُل .
اضرب في .
انقُل إلى يسار .
اضرب في .
اضرب في .
جمّع الحدود المتعاكسة في .
اطرح من .
أضف و.
أضف و.
جمّع الحدود المتعاكسة في .
أضف و.
أضف و.
اطرح من .
جمّع الحدود.
أعِد كتابة في صورة حاصل ضرب.
اضرب في .
اضرب في بجمع الأُسس.
اضرب في .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
اكتب في صورة كسر ذي قاسم مشترك.
اجمع البسوط على القاسم المشترك.
أضف و.
Step 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
Step 4
أوجِد المشتق الأول.
استخدِم لكتابة في صورة .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
استبدِل كافة حالات حدوث بـ .
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
اجمع و.
اجمع البسوط على القاسم المشترك.
بسّط بَسْط الكسر.
اضرب في .
اطرح من .
اجمع الكسور.
انقُل السالب أمام الكسر.
اجمع و.
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
بسّط.
أعِد ترتيب عوامل .
اضرب في .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
ألغِ العوامل المشتركة.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
المشتق الأول لـ بالنسبة إلى هو .
Step 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
أضف إلى كلا المتعادلين.
Step 6
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
Step 7
النقاط الحرجة اللازم حساب قيمتها.
Step 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 9
بسّط القاسم.
بسّط كل حد.
ارفع إلى القوة .
اضرب في .
اطرح من .
أضف و.
أعِد كتابة بالصيغة .
طبّق قاعدة القوة واضرب الأُسس، .
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
ارفع إلى القوة .
احذِف العامل المشترك لـ و.
أخرِج العامل من .
ألغِ العوامل المشتركة.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
Step 10
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
Step 11
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
ارفع إلى القوة .
اضرب في .
اطرح من .
أضف و.
أعِد كتابة بالصيغة .
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
الإجابة النهائية هي .
Step 12
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
Step 13