حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل التكامل من 0 إلى 7 لـ (3y^2-2y+5)/(y^3-y^2+5y+1) بالنسبة إلى y
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4.3
اضرب في .
خطوة 1.1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.2
أضف و.
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.3.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.3.1.3
اضرب في .
خطوة 1.3.1.4
اضرب في .
خطوة 1.3.2
أضف و.
خطوة 1.3.3
أضف و.
خطوة 1.3.4
أضف و.
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1.1
ارفع إلى القوة .
خطوة 1.5.1.2
ارفع إلى القوة .
خطوة 1.5.1.3
اضرب في .
خطوة 1.5.1.4
اضرب في .
خطوة 1.5.2
اطرح من .
خطوة 1.5.3
أضف و.
خطوة 1.5.4
أضف و.
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
تكامل بالنسبة إلى هو .
خطوة 3
احسِب قيمة في وفي .
خطوة 4
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.3
اقسِم على .
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 7