حساب التفاضل والتكامل الأمثلة

أوجد القيمة الوسطية للمعادلة y=3/(x-2) , [4,7]
,
خطوة 1
اكتب في صورة دالة.
خطوة 2
لإيجاد متوسط قيمة الدالة، ينبغي أن تكون الدالة متصلة في الفترة المغلقة . ولمعرفة ما إذا كانت متصلة في أم لا، أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2.2
أضف إلى كلا المتعادلين.
خطوة 2.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
متصلة على .
متصلة
خطوة 4
يُعرف متوسط قيمة الدالة على مدى الفترة بأنه .
خطوة 5
عوّض بالقيم الفعلية في قاعدة القيمة المتوسطة لدالة.
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
أوجِد مشتقة .
خطوة 7.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 7.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 7.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 7.1.5
أضف و.
خطوة 7.2
عوّض بالنهاية الدنيا عن في .
خطوة 7.3
اطرح من .
خطوة 7.4
عوّض بالنهاية العليا عن في .
خطوة 7.5
اطرح من .
خطوة 7.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 7.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 8
تكامل بالنسبة إلى هو .
خطوة 9
احسِب قيمة في وفي .
خطوة 10
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 11.2
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 12
اطرح من .
خطوة 13
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أخرِج العامل من .
خطوة 13.2
ألغِ العامل المشترك.
خطوة 13.3
أعِد كتابة العبارة.
خطوة 14