حساب التفاضل والتكامل الأمثلة

استخدم تعريف النهاية لإيجاد المشتق f(x)=1/x
خطوة 1
ضع في اعتبارك تعريف الحد للمشتق.
خطوة 2
أوجِد مكونات التعريف.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة الدالة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
استبدِل المتغير بـ في العبارة.
خطوة 2.1.2
الإجابة النهائية هي .
خطوة 2.2
أوجِد مكونات التعريف.
خطوة 3
عوّض بالمكونات.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.1.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
اضرب في .
خطوة 4.1.3.2
اضرب في .
خطوة 4.1.3.3
أعِد ترتيب عوامل .
خطوة 4.1.4
اجمع البسوط على القاسم المشترك.
خطوة 4.1.5
أعِد كتابة بصيغة محلّلة إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.5.1
طبّق خاصية التوزيع.
خطوة 4.1.5.2
اطرح من .
خطوة 4.1.5.3
اطرح من .
خطوة 4.1.6
انقُل السالب أمام الكسر.
خطوة 4.2
اضرب بسط الكسر في مقلوب القاسم.
خطوة 4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.3.2
أخرِج العامل من .
خطوة 4.3.3
ألغِ العامل المشترك.
خطوة 4.3.4
أعِد كتابة العبارة.
خطوة 4.4
انقُل السالب أمام الكسر.
خطوة 5
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5.3
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.5
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6
احسِب قيمة حد بالتعويض عن بـ .
خطوة 7
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أضف و.
خطوة 7.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
اضرب في .
خطوة 7.2.2
ارفع إلى القوة .
خطوة 7.2.3
ارفع إلى القوة .
خطوة 7.2.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 7.2.5
أضف و.
خطوة 8