حساب التفاضل والتكامل الأمثلة

أوجد التقعر f(x)=(x^2-2x)/(x^2-4)
خطوة 1
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.5
اضرب في .
خطوة 1.1.1.2.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.9
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.9.1
أضف و.
خطوة 1.1.1.2.9.2
اضرب في .
خطوة 1.1.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
طبّق خاصية التوزيع.
خطوة 1.1.1.3.2
طبّق خاصية التوزيع.
خطوة 1.1.1.3.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.1.1
طبّق خاصية التوزيع.
خطوة 1.1.1.3.3.1.1.2
طبّق خاصية التوزيع.
خطوة 1.1.1.3.3.1.1.3
طبّق خاصية التوزيع.
خطوة 1.1.1.3.3.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.1.3.3.1.2.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.2.2.1
انقُل .
خطوة 1.1.1.3.3.1.2.2.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.2.2.2.1
ارفع إلى القوة .
خطوة 1.1.1.3.3.1.2.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.1.3.3.1.2.2.3
أضف و.
خطوة 1.1.1.3.3.1.2.3
انقُل إلى يسار .
خطوة 1.1.1.3.3.1.2.4
اضرب في .
خطوة 1.1.1.3.3.1.2.5
اضرب في .
خطوة 1.1.1.3.3.1.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.3.1
انقُل .
خطوة 1.1.1.3.3.1.3.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.3.2.1
ارفع إلى القوة .
خطوة 1.1.1.3.3.1.3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.1.3.3.1.3.3
أضف و.
خطوة 1.1.1.3.3.1.4
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1.4.1
انقُل .
خطوة 1.1.1.3.3.1.4.2
اضرب في .
خطوة 1.1.1.3.3.1.5
اضرب في .
خطوة 1.1.1.3.3.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.2.1
اطرح من .
خطوة 1.1.1.3.3.2.2
أضف و.
خطوة 1.1.1.3.3.3
أضف و.
خطوة 1.1.1.3.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.4.1.1
أخرِج العامل من .
خطوة 1.1.1.3.4.1.2
أخرِج العامل من .
خطوة 1.1.1.3.4.1.3
أخرِج العامل من .
خطوة 1.1.1.3.4.1.4
أخرِج العامل من .
خطوة 1.1.1.3.4.1.5
أخرِج العامل من .
خطوة 1.1.1.3.4.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.4.2.1
أعِد كتابة بالصيغة .
خطوة 1.1.1.3.4.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 1.1.1.3.4.2.3
أعِد كتابة متعدد الحدود.
خطوة 1.1.1.3.4.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 1.1.1.3.5
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.5.1
أعِد كتابة بالصيغة .
خطوة 1.1.1.3.5.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.1.1.3.5.3
طبّق قاعدة الضرب على .
خطوة 1.1.1.3.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.6.1
ألغِ العامل المشترك.
خطوة 1.1.1.3.6.2
أعِد كتابة العبارة.
خطوة 1.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.1.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.2.1
أعِد كتابة بالصيغة .
خطوة 1.1.2.1.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.2.1.2.2.2
اضرب في .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
اضرب في .
خطوة 1.1.2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.5.1
أضف و.
خطوة 1.1.2.3.5.2
اضرب في .
خطوة 1.1.2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.2.4.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.4.2.1
اجمع و.
خطوة 1.1.2.4.2.2
انقُل السالب أمام الكسر.
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أضف إلى كلا المتعادلين.
خطوة 2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
أعِد كتابة بالصيغة .
خطوة 2.2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
أضف و.
خطوة 4.2.1.2
ارفع إلى القوة .
خطوة 4.2.2
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
أخرِج العامل من .
خطوة 4.2.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.2.1
أخرِج العامل من .
خطوة 4.2.2.1.2.2
ألغِ العامل المشترك.
خطوة 4.2.2.1.2.3
أعِد كتابة العبارة.
خطوة 4.2.2.2
انقُل السالب أمام الكسر.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
أضف و.
خطوة 5.2.1.2
ارفع إلى القوة .
خطوة 5.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2.2
ألغِ العامل المشترك.
خطوة 5.2.2.2.3
أعِد كتابة العبارة.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
أضف و.
خطوة 6.2.1.2
ارفع إلى القوة .
خطوة 6.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أخرِج العامل من .
خطوة 6.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1
أخرِج العامل من .
خطوة 6.2.2.2.2
ألغِ العامل المشترك.
خطوة 6.2.2.2.3
أعِد كتابة العبارة.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 7
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 8