حساب التفاضل والتكامل الأمثلة

خطوة 1
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.1.1.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.1.1.2.2
اضرب في .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.1.3.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.2.1
اجمع و.
خطوة 1.1.1.3.2.2
انقُل السالب أمام الكسر.
خطوة 1.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.1.2.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.2.2.2.2
اضرب في .
خطوة 1.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.4
اضرب في .
خطوة 1.1.2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.2.5.2
اجمع و.
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.2.2.3
زائد أو ناقص يساوي .
خطوة 2.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ارفع إلى القوة .
خطوة 4.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أخرِج العامل من .
خطوة 4.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
أخرِج العامل من .
خطوة 4.2.2.2.2
ألغِ العامل المشترك.
خطوة 4.2.2.2.3
أعِد كتابة العبارة.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
ارفع إلى القوة .
خطوة 5.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2.2
ألغِ العامل المشترك.
خطوة 5.2.2.2.3
أعِد كتابة العبارة.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 7