حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف y = natural log of x^2+1
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.4
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.4.1
أضف و.
خطوة 2.1.2.4.2
اجمع و.
خطوة 2.1.2.4.3
اجمع و.
خطوة 2.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.2
اضرب في .
خطوة 2.2.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.3.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.6.1
أضف و.
خطوة 2.2.3.6.2
اضرب في .
خطوة 2.2.4
ارفع إلى القوة .
خطوة 2.2.5
ارفع إلى القوة .
خطوة 2.2.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.7
أضف و.
خطوة 2.2.8
اطرح من .
خطوة 2.2.9
اجمع و.
خطوة 2.2.10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.10.1
طبّق خاصية التوزيع.
خطوة 2.2.10.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.10.2.1
اضرب في .
خطوة 2.2.10.2.2
اضرب في .
خطوة 2.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 3.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اطرح من كلا المتعادلين.
خطوة 3.3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
اقسِم كل حد في على .
خطوة 3.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.1.2
اقسِم على .
خطوة 3.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.3.1
اقسِم على .
خطوة 3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.3.4
أي جذر لـ هو .
خطوة 3.3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.2
أضف و.
خطوة 4.1.2.3
الإجابة النهائية هي .
خطوة 4.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.3
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
استبدِل المتغير بـ في العبارة.
خطوة 4.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
ارفع إلى القوة .
خطوة 4.3.2.2
أضف و.
خطوة 4.3.2.3
الإجابة النهائية هي .
خطوة 4.4
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.5
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
خطوة 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
أضف و.
خطوة 6.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
ارفع إلى القوة .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.2.3
ارفع إلى القوة .
خطوة 6.2.3
اقسِم على .
خطوة 6.2.4
الإجابة النهائية هي .
خطوة 6.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
أضف و.
خطوة 7.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 7.2.2.2
أضف و.
خطوة 7.2.2.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.2.3
اقسِم على .
خطوة 7.2.4
الإجابة النهائية هي .
خطوة 7.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.1.3
أضف و.
خطوة 8.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.2.1
ارفع إلى القوة .
خطوة 8.2.2.2
أضف و.
خطوة 8.2.2.3
ارفع إلى القوة .
خطوة 8.2.3
اقسِم على .
خطوة 8.2.4
الإجابة النهائية هي .
خطوة 8.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
خطوة 10