حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.2.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.2.2
اضرب في .
خطوة 2.1.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2.5
أضف و.
خطوة 2.1.1.2.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.2.7
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.2.7.1
اضرب في .
خطوة 2.1.1.2.7.2
اضرب في .
خطوة 2.1.1.2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.3
ارفع إلى القوة .
خطوة 2.1.1.4
ارفع إلى القوة .
خطوة 2.1.1.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.1.6
أضف و.
خطوة 2.1.1.7
أضف و.
خطوة 2.1.1.8
أعِد ترتيب الحدود.
خطوة 2.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.1.2.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.2.1.2
اضرب في .
خطوة 2.1.2.2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.5.1
أضف و.
خطوة 2.1.2.2.5.2
انقُل إلى يسار .
خطوة 2.1.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2.4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.4.1
اضرب في .
خطوة 2.1.2.4.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.4.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.4.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.4.5
اضرب في .
خطوة 2.1.2.4.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.4.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.4.7.1
أضف و.
خطوة 2.1.2.4.7.2
اضرب في .
خطوة 2.1.2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.1
طبّق خاصية التوزيع.
خطوة 2.1.2.5.2
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.5.3.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.2.1
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.2.2
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.2.3
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.1.2.5.3.1.3.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.3.1.2.1
انقُل .
خطوة 2.1.2.5.3.1.3.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.5.3.1.3.1.2.3
أضف و.
خطوة 2.1.2.5.3.1.3.1.3
اضرب في .
خطوة 2.1.2.5.3.1.3.1.4
اضرب في .
خطوة 2.1.2.5.3.1.3.1.5
اضرب في .
خطوة 2.1.2.5.3.1.3.1.6
اضرب في .
خطوة 2.1.2.5.3.1.3.1.7
اضرب في .
خطوة 2.1.2.5.3.1.3.2
اطرح من .
خطوة 2.1.2.5.3.1.4
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.5.1
اضرب في .
خطوة 2.1.2.5.3.1.5.2
اضرب في .
خطوة 2.1.2.5.3.1.6
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.7.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.7.1.1
انقُل .
خطوة 2.1.2.5.3.1.7.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.7.1.2.1
ارفع إلى القوة .
خطوة 2.1.2.5.3.1.7.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.5.3.1.7.1.3
أضف و.
خطوة 2.1.2.5.3.1.7.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.7.2.1
انقُل .
خطوة 2.1.2.5.3.1.7.2.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.7.2.2.1
ارفع إلى القوة .
خطوة 2.1.2.5.3.1.7.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.5.3.1.7.2.3
أضف و.
خطوة 2.1.2.5.3.1.8
اضرب في .
خطوة 2.1.2.5.3.1.9
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.9.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.9.1.1
انقُل .
خطوة 2.1.2.5.3.1.9.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.9.1.2.1
ارفع إلى القوة .
خطوة 2.1.2.5.3.1.9.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.5.3.1.9.1.3
أضف و.
خطوة 2.1.2.5.3.1.9.2
اضرب في .
خطوة 2.1.2.5.3.1.10
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.10.1
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.10.2
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.10.3
طبّق خاصية التوزيع.
خطوة 2.1.2.5.3.1.11
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.11.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.11.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.1.2.5.3.1.11.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.11.1.2.1
انقُل .
خطوة 2.1.2.5.3.1.11.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.5.3.1.11.1.2.3
أضف و.
خطوة 2.1.2.5.3.1.11.1.3
اضرب في .
خطوة 2.1.2.5.3.1.11.1.4
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.11.1.4.1
انقُل .
خطوة 2.1.2.5.3.1.11.1.4.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.3.1.11.1.4.2.1
ارفع إلى القوة .
خطوة 2.1.2.5.3.1.11.1.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.5.3.1.11.1.4.3
أضف و.
خطوة 2.1.2.5.3.1.11.1.5
اضرب في .
خطوة 2.1.2.5.3.1.11.2
اطرح من .
خطوة 2.1.2.5.3.1.11.3
أضف و.
خطوة 2.1.2.5.3.2
اطرح من .
خطوة 2.1.2.5.3.3
أضف و.
خطوة 2.1.2.5.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.4.1.1
أخرِج العامل من .
خطوة 2.1.2.5.4.1.2
أخرِج العامل من .
خطوة 2.1.2.5.4.1.3
أخرِج العامل من .
خطوة 2.1.2.5.4.1.4
أخرِج العامل من .
خطوة 2.1.2.5.4.1.5
أخرِج العامل من .
خطوة 2.1.2.5.4.2
أعِد كتابة بالصيغة .
خطوة 2.1.2.5.4.3
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2.1.2.5.4.4
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.4.4.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.4.4.1.1
أخرِج العامل من .
خطوة 2.1.2.5.4.4.1.2
أعِد كتابة في صورة زائد
خطوة 2.1.2.5.4.4.1.3
طبّق خاصية التوزيع.
خطوة 2.1.2.5.4.4.1.4
اضرب في .
خطوة 2.1.2.5.4.4.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.4.4.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.1.2.5.4.4.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.1.2.5.4.4.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.1.2.5.4.5
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2.5.4.6
أعِد كتابة بالصيغة .
خطوة 2.1.2.5.4.7
أعِد ترتيب و.
خطوة 2.1.2.5.4.8
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.1.2.5.5
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.5.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.5.5.2
أعِد ترتيب و.
خطوة 2.1.2.5.5.3
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.1.2.5.5.4
طبّق قاعدة الضرب على .
خطوة 2.1.2.5.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.6.1
أخرِج العامل من .
خطوة 2.1.2.5.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.6.2.1
أخرِج العامل من .
خطوة 2.1.2.5.6.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.5.6.2.3
أعِد كتابة العبارة.
خطوة 2.1.2.5.7
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.7.1
أخرِج العامل من .
خطوة 2.1.2.5.7.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.7.2.1
أخرِج العامل من .
خطوة 2.1.2.5.7.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.5.7.2.3
أعِد كتابة العبارة.
خطوة 2.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.2.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.2.3.2
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.3.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.2.1
اطرح من كلا المتعادلين.
خطوة 2.2.3.3.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.2.3.3.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.2.3.1
أعِد كتابة بالصيغة .
خطوة 2.2.3.3.2.3.2
أعِد كتابة بالصيغة .
خطوة 2.2.3.3.2.3.3
أعِد كتابة بالصيغة .
خطوة 2.2.3.3.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.2.3.3.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.2.3.3.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.2.3.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
اقسِم كل حد في على .
خطوة 3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.2.2.2.2
اقسِم على .
خطوة 3.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.3.1
اقسِم على .
خطوة 3.2.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2.4
أي جذر لـ هو .
خطوة 3.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
احذِف الأقواس.
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اطرح من .
خطوة 5.2.2.2
اضرب في .
خطوة 5.2.2.3
أضف و.
خطوة 5.2.2.4
ارفع إلى القوة .
خطوة 5.2.2.5
ارفع إلى القوة .
خطوة 5.2.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1
ارفع إلى القوة .
خطوة 5.2.3.2
أضف و.
خطوة 5.2.4
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.4.1
اضرب في .
خطوة 5.2.4.2
اضرب في .
خطوة 5.2.4.3
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5.2.5
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
احذِف الأقواس.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اطرح من .
خطوة 6.2.2.2
اضرب في .
خطوة 6.2.2.3
أضف و.
خطوة 6.2.2.4
ارفع إلى القوة .
خطوة 6.2.2.5
ارفع إلى القوة .
خطوة 6.2.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
ارفع إلى القوة .
خطوة 6.2.3.2
أضف و.
خطوة 6.2.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.4.1
اضرب في .
خطوة 6.2.4.2
اضرب في .
خطوة 6.2.4.3
اقسِم على .
خطوة 6.2.5
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 7
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
احذِف الأقواس.
خطوة 7.2.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اضرب في .
خطوة 7.2.2.2
اضرب في .
خطوة 7.2.3
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.3.1
أضف و.
خطوة 7.2.3.2
اضرب في .
خطوة 7.2.3.3
اطرح من .
خطوة 7.2.3.4
ارفع إلى القوة .
خطوة 7.2.3.5
ارفع إلى القوة .
خطوة 7.2.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.4.1
ارفع إلى القوة .
خطوة 7.2.4.2
أضف و.
خطوة 7.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.5.1
اضرب في .
خطوة 7.2.5.2
اقسِم على .
خطوة 7.2.6
الإجابة النهائية هي .
خطوة 7.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 8
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
احذِف الأقواس.
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.2.1
أضف و.
خطوة 8.2.2.2
اضرب في .
خطوة 8.2.2.3
اطرح من .
خطوة 8.2.2.4
ارفع إلى القوة .
خطوة 8.2.2.5
ارفع إلى القوة .
خطوة 8.2.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.3.1
ارفع إلى القوة .
خطوة 8.2.3.2
أضف و.
خطوة 8.2.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.4.1
اضرب في .
خطوة 8.2.4.2
اضرب في .
خطوة 8.2.4.3
انقُل السالب أمام الكسر.
خطوة 8.2.5
الإجابة النهائية هي .
خطوة 8.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 9
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
خطوة 10