حساب التفاضل والتكامل الأمثلة

خطوة 1
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.1.2.1.2
اضرب في .
خطوة 1.1.1.2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.5.1
أضف و.
خطوة 1.1.1.2.5.2
اضرب في .
خطوة 1.1.1.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.7
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.7.1
اضرب في .
خطوة 1.1.1.2.7.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.7.2.1
أخرِج العامل من .
خطوة 1.1.1.2.7.2.2
أخرِج العامل من .
خطوة 1.1.1.2.7.2.3
أخرِج العامل من .
خطوة 1.1.1.3
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
أخرِج العامل من .
خطوة 1.1.1.3.2
ألغِ العامل المشترك.
خطوة 1.1.1.3.3
أعِد كتابة العبارة.
خطوة 1.1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.4.1
طبّق خاصية التوزيع.
خطوة 1.1.1.4.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.4.2.1
اضرب في .
خطوة 1.1.1.4.2.2
اطرح من .
خطوة 1.1.1.4.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.4.3.1
أخرِج العامل من .
خطوة 1.1.1.4.3.2
أخرِج العامل من .
خطوة 1.1.1.4.3.3
أخرِج العامل من .
خطوة 1.1.1.4.4
أخرِج العامل من .
خطوة 1.1.1.4.5
أعِد كتابة بالصيغة .
خطوة 1.1.1.4.6
أخرِج العامل من .
خطوة 1.1.1.4.7
أعِد كتابة بالصيغة .
خطوة 1.1.1.4.8
انقُل السالب أمام الكسر.
خطوة 1.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.2.3.1.2
اضرب في .
خطوة 1.1.2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.5.1
أضف و.
خطوة 1.1.2.3.5.2
اضرب في .
خطوة 1.1.2.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.7
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.7.1
اضرب في .
خطوة 1.1.2.3.7.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.7.2.1
أخرِج العامل من .
خطوة 1.1.2.3.7.2.2
أخرِج العامل من .
خطوة 1.1.2.3.7.2.3
أخرِج العامل من .
خطوة 1.1.2.4
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.4.1
أخرِج العامل من .
خطوة 1.1.2.4.2
ألغِ العامل المشترك.
خطوة 1.1.2.4.3
أعِد كتابة العبارة.
خطوة 1.1.2.5
اجمع و.
خطوة 1.1.2.6
انقُل السالب أمام الكسر.
خطوة 1.1.2.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.7.1
طبّق خاصية التوزيع.
خطوة 1.1.2.7.2
طبّق خاصية التوزيع.
خطوة 1.1.2.7.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.7.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.7.3.1.1
اضرب في .
خطوة 1.1.2.7.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.7.3.1.2.1
اضرب في .
خطوة 1.1.2.7.3.1.2.2
اضرب في .
خطوة 1.1.2.7.3.2
اطرح من .
خطوة 1.1.2.7.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.7.4.1
أخرِج العامل من .
خطوة 1.1.2.7.4.2
أخرِج العامل من .
خطوة 1.1.2.7.4.3
أخرِج العامل من .
خطوة 1.1.2.7.5
أخرِج العامل من .
خطوة 1.1.2.7.6
أعِد كتابة بالصيغة .
خطوة 1.1.2.7.7
أخرِج العامل من .
خطوة 1.1.2.7.8
أعِد كتابة بالصيغة .
خطوة 1.1.2.7.9
انقُل السالب أمام الكسر.
خطوة 1.1.2.7.10
اضرب في .
خطوة 1.1.2.7.11
اضرب في .
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1.1
اقسِم كل حد في على .
خطوة 1.2.3.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.1.2.1.2
اقسِم على .
خطوة 1.2.3.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1.3.1
اقسِم على .
خطوة 1.2.3.2
أضف إلى كلا المتعادلين.
خطوة 2
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 2.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
اطرح من .
خطوة 4.2.1.2
ارفع إلى القوة .
خطوة 4.2.1.3
اضرب في .
خطوة 4.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أخرِج العامل من .
خطوة 4.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
أخرِج العامل من .
خطوة 4.2.2.2.2
ألغِ العامل المشترك.
خطوة 4.2.2.2.3
أعِد كتابة العبارة.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
اطرح من .
خطوة 5.2.1.2
ارفع إلى القوة .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2.2
ألغِ العامل المشترك.
خطوة 5.2.2.2.3
أعِد كتابة العبارة.
خطوة 5.2.3
انقُل السالب أمام الكسر.
خطوة 5.2.4
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
اطرح من .
خطوة 6.2.1.2
ارفع إلى القوة .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أخرِج العامل من .
خطوة 6.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1
أخرِج العامل من .
خطوة 6.2.2.2.2
ألغِ العامل المشترك.
خطوة 6.2.2.2.3
أعِد كتابة العبارة.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 7
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
خطوة 8