إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الثاني.
خطوة 1.1.1
أوجِد المشتق الأول.
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
احسِب قيمة .
خطوة 1.1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
اضرب في .
خطوة 1.1.1.3
احسِب قيمة .
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.5
اضرب في .
خطوة 1.1.1.3.6
انقُل إلى يسار .
خطوة 1.1.1.3.7
اضرب في .
خطوة 1.1.2
أوجِد المشتق الثاني.
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
احسِب قيمة .
خطوة 1.1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2.3
اضرب في .
خطوة 1.1.2.3
احسِب قيمة .
خطوة 1.1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.5
اضرب في .
خطوة 1.1.2.3.6
اضرب في .
خطوة 1.1.2.3.7
اضرب في .
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
اطرح من كلا المتعادلين.
خطوة 1.2.3
اقسِم كل حد في على وبسّط.
خطوة 1.2.3.1
اقسِم كل حد في على .
خطوة 1.2.3.2
بسّط الطرف الأيسر.
خطوة 1.2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2
اقسِم على .
خطوة 1.2.3.3
بسّط الطرف الأيمن.
خطوة 1.2.3.3.1
احذِف العامل المشترك لـ و.
خطوة 1.2.3.3.1.1
أخرِج العامل من .
خطوة 1.2.3.3.1.2
ألغِ العوامل المشتركة.
خطوة 1.2.3.3.1.2.1
أخرِج العامل من .
خطوة 1.2.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.3.2
انقُل السالب أمام الكسر.
خطوة 1.2.4
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 1.2.5
بسّط الطرف الأيمن.
خطوة 1.2.5.1
القيمة الدقيقة لـ هي .
خطوة 1.2.6
اقسِم كل حد في على وبسّط.
خطوة 1.2.6.1
اقسِم كل حد في على .
خطوة 1.2.6.2
بسّط الطرف الأيسر.
خطوة 1.2.6.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.6.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.6.2.1.2
اقسِم على .
خطوة 1.2.6.3
بسّط الطرف الأيمن.
خطوة 1.2.6.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.2.6.3.2
اضرب .
خطوة 1.2.6.3.2.1
اضرب في .
خطوة 1.2.6.3.2.2
اضرب في .
خطوة 1.2.7
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 1.2.8
بسّط العبارة لإيجاد الحل الثاني.
خطوة 1.2.8.1
اطرح من .
خطوة 1.2.8.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 1.2.8.3
اقسِم كل حد في على وبسّط.
خطوة 1.2.8.3.1
اقسِم كل حد في على .
خطوة 1.2.8.3.2
بسّط الطرف الأيسر.
خطوة 1.2.8.3.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.8.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.8.3.2.1.2
اقسِم على .
خطوة 1.2.8.3.3
بسّط الطرف الأيمن.
خطوة 1.2.8.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.2.8.3.3.2
اضرب .
خطوة 1.2.8.3.3.2.1
اضرب في .
خطوة 1.2.8.3.3.2.2
اضرب في .
خطوة 1.2.9
أوجِد فترة .
خطوة 1.2.9.1
يمكن حساب فترة الدالة باستخدام .
خطوة 1.2.9.2
استبدِل بـ في القاعدة للفترة.
خطوة 1.2.9.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 1.2.9.4
ألغِ العامل المشترك لـ .
خطوة 1.2.9.4.1
ألغِ العامل المشترك.
خطوة 1.2.9.4.2
اقسِم على .
خطوة 1.2.10
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
خطوة 1.2.10.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 1.2.10.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.10.3
اجمع الكسور.
خطوة 1.2.10.3.1
اجمع و.
خطوة 1.2.10.3.2
اجمع البسوط على القاسم المشترك.
خطوة 1.2.10.4
بسّط بَسْط الكسر.
خطوة 1.2.10.4.1
انقُل إلى يسار .
خطوة 1.2.10.4.2
اطرح من .
خطوة 1.2.10.5
اسرِد الزوايا الجديدة.
خطوة 1.2.11
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 2
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
اضرب في .
خطوة 4.2.1.2
القيمة الدقيقة لـ هي .
خطوة 4.2.1.3
اضرب في .
خطوة 4.2.2
أضف و.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 5