حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.2.4
اضرب في .
خطوة 2.1.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.2.6.1
أضف و.
خطوة 2.1.1.2.6.2
انقُل إلى يسار .
خطوة 2.1.1.2.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.2.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2.10
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.2.10.1
أضف و.
خطوة 2.1.1.2.10.2
اضرب في .
خطوة 2.1.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.1
طبّق خاصية التوزيع.
خطوة 2.1.1.3.2
طبّق خاصية التوزيع.
خطوة 2.1.1.3.3
طبّق خاصية التوزيع.
خطوة 2.1.1.3.4
طبّق خاصية التوزيع.
خطوة 2.1.1.3.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.1.1.1
انقُل .
خطوة 2.1.1.3.5.1.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.1.1.2.1
ارفع إلى القوة .
خطوة 2.1.1.3.5.1.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.1.3.5.1.1.3
أضف و.
خطوة 2.1.1.3.5.1.2
اضرب في .
خطوة 2.1.1.3.5.1.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.1.3.1
انقُل .
خطوة 2.1.1.3.5.1.3.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.1.3.2.1
ارفع إلى القوة .
خطوة 2.1.1.3.5.1.3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.1.3.5.1.3.3
أضف و.
خطوة 2.1.1.3.5.1.4
اضرب في .
خطوة 2.1.1.3.5.1.5
اضرب في .
خطوة 2.1.1.3.5.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.5.2.1
اطرح من .
خطوة 2.1.1.3.5.2.2
أضف و.
خطوة 2.1.1.3.5.3
أضف و.
خطوة 2.1.1.3.6
انقُل السالب أمام الكسر.
خطوة 2.1.1.3.7
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.7.1
أعِد كتابة بالصيغة .
خطوة 2.1.1.3.7.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.1.1.3.7.3
طبّق قاعدة الضرب على .
خطوة 2.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3.2
اضرب في .
خطوة 2.1.2.4
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.2.5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2.6
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.6.1
انقُل إلى يسار .
خطوة 2.1.2.6.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.6.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.6.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.6.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.6.5.1
أضف و.
خطوة 2.1.2.6.5.2
اضرب في .
خطوة 2.1.2.7
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.7.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.7.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2.8
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.8.1
انقُل إلى يسار .
خطوة 2.1.2.8.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.8.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.8.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.8.5
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.8.5.1
أضف و.
خطوة 2.1.2.8.5.2
اضرب في .
خطوة 2.1.2.8.5.3
اجمع و.
خطوة 2.1.2.8.5.4
انقُل السالب أمام الكسر.
خطوة 2.1.2.9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.1
طبّق قاعدة الضرب على .
خطوة 2.1.2.9.2
طبّق خاصية التوزيع.
خطوة 2.1.2.9.3
طبّق خاصية التوزيع.
خطوة 2.1.2.9.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.1.1
أخرِج العامل من .
خطوة 2.1.2.9.4.1.2
أخرِج العامل من .
خطوة 2.1.2.9.4.1.3
أخرِج العامل من .
خطوة 2.1.2.9.4.1.4
أخرِج العامل من .
خطوة 2.1.2.9.4.1.5
أخرِج العامل من .
خطوة 2.1.2.9.4.2
اجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.2.1
اضرب في .
خطوة 2.1.2.9.4.2.2
اضرب في .
خطوة 2.1.2.9.4.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.3.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.3.1.1
طبّق خاصية التوزيع.
خطوة 2.1.2.9.4.3.1.2
طبّق خاصية التوزيع.
خطوة 2.1.2.9.4.3.1.3
طبّق خاصية التوزيع.
خطوة 2.1.2.9.4.3.2
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.3.2.1.1
اضرب في .
خطوة 2.1.2.9.4.3.2.1.2
انقُل إلى يسار .
خطوة 2.1.2.9.4.3.2.1.3
أعِد كتابة بالصيغة .
خطوة 2.1.2.9.4.3.2.1.4
اضرب في .
خطوة 2.1.2.9.4.3.2.1.5
اضرب في .
خطوة 2.1.2.9.4.3.2.2
أضف و.
خطوة 2.1.2.9.4.3.2.3
أضف و.
خطوة 2.1.2.9.4.3.3
طبّق خاصية التوزيع.
خطوة 2.1.2.9.4.3.4
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.3.4.1
انقُل .
خطوة 2.1.2.9.4.3.4.2
اضرب في .
خطوة 2.1.2.9.4.3.5
اضرب في .
خطوة 2.1.2.9.4.3.6
طبّق خاصية التوزيع.
خطوة 2.1.2.9.4.3.7
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.3.7.1
انقُل .
خطوة 2.1.2.9.4.3.7.2
اضرب في .
خطوة 2.1.2.9.4.3.8
اضرب في .
خطوة 2.1.2.9.4.4
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.4.4.1
أضف و.
خطوة 2.1.2.9.4.4.2
أضف و.
خطوة 2.1.2.9.4.5
اطرح من .
خطوة 2.1.2.9.4.6
اطرح من .
خطوة 2.1.2.9.5
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.9.5.1.2
اضرب في .
خطوة 2.1.2.9.5.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.9.5.2.2
اضرب في .
خطوة 2.1.2.9.5.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.3.1
أخرِج العامل من .
خطوة 2.1.2.9.5.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.3.2.1
أخرِج العامل من .
خطوة 2.1.2.9.5.3.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.9.5.3.2.3
أعِد كتابة العبارة.
خطوة 2.1.2.9.5.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.4.1
أخرِج العامل من .
خطوة 2.1.2.9.5.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.9.5.4.2.1
أخرِج العامل من .
خطوة 2.1.2.9.5.4.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.9.5.4.2.3
أعِد كتابة العبارة.
خطوة 2.1.2.9.6
أخرِج العامل من .
خطوة 2.1.2.9.7
أعِد كتابة بالصيغة .
خطوة 2.1.2.9.8
أخرِج العامل من .
خطوة 2.1.2.9.9
أعِد كتابة بالصيغة .
خطوة 2.1.2.9.10
انقُل السالب أمام الكسر.
خطوة 2.1.2.9.11
اضرب في .
خطوة 2.1.2.9.12
اضرب في .
خطوة 2.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.2.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.1
اقسِم كل حد في على .
خطوة 2.2.3.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.1.2.1.2
اقسِم على .
خطوة 2.2.3.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.3.1
اقسِم على .
خطوة 2.2.3.2
اطرح من كلا المتعادلين.
خطوة 2.2.3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.1
اقسِم كل حد في على .
خطوة 2.2.3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.3.2.1.2
اقسِم على .
خطوة 2.2.3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.3.1
انقُل السالب أمام الكسر.
خطوة 2.2.3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.2.3.5
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.5.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.5.1.1
أعِد كتابة بالصيغة .
خطوة 2.2.3.5.1.2
أعِد كتابة بالصيغة .
خطوة 2.2.3.5.2
أخرِج الحدود من تحت الجذر.
خطوة 2.2.3.5.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.2.3.5.4
أعِد كتابة بالصيغة .
خطوة 2.2.3.5.5
أي جذر لـ هو .
خطوة 2.2.3.5.6
اضرب في .
خطوة 2.2.3.5.7
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.5.7.1
اضرب في .
خطوة 2.2.3.5.7.2
ارفع إلى القوة .
خطوة 2.2.3.5.7.3
ارفع إلى القوة .
خطوة 2.2.3.5.7.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.3.5.7.5
أضف و.
خطوة 2.2.3.5.7.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.5.7.6.1
استخدِم لكتابة في صورة .
خطوة 2.2.3.5.7.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.3.5.7.6.3
اجمع و.
خطوة 2.2.3.5.7.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.5.7.6.4.1
ألغِ العامل المشترك.
خطوة 2.2.3.5.7.6.4.2
أعِد كتابة العبارة.
خطوة 2.2.3.5.7.6.5
احسِب قيمة الأُس.
خطوة 2.2.3.5.8
اجمع و.
خطوة 2.2.3.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.2.3.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.2.3.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2.3
أي جذر لـ هو .
خطوة 3.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
أضف و.
خطوة 5.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أضف و.
خطوة 5.2.2.2
اطرح من .
خطوة 5.2.2.3
ارفع إلى القوة .
خطوة 5.2.2.4
ارفع إلى القوة .
خطوة 5.2.3
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1
اضرب في .
خطوة 5.2.3.2
اضرب في .
خطوة 5.2.4
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
أضف و.
خطوة 6.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أعِد كتابة بالصيغة .
خطوة 6.2.2.2
أعِد كتابة بالصيغة .
خطوة 6.2.2.3
أخرِج العامل من .
خطوة 6.2.2.4
طبّق قاعدة الضرب على .
خطوة 6.2.2.5
ارفع إلى القوة .
خطوة 6.2.2.6
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.6.1
انقُل .
خطوة 6.2.2.6.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6.2.2.6.3
أضف و.
خطوة 6.2.3
اضرب في .
خطوة 6.2.4
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.4.1
اطرح من .
خطوة 6.2.4.2
ارفع إلى القوة .
خطوة 6.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.5.1
اضرب في .
خطوة 6.2.5.2
اقسِم على .
خطوة 6.2.6
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 7
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
أضف و.
خطوة 7.2.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
أضف و.
خطوة 7.2.2.2
اطرح من .
خطوة 7.2.2.3
ارفع إلى القوة .
خطوة 7.2.2.4
ارفع إلى القوة .
خطوة 7.2.3
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.3.1
اضرب في .
خطوة 7.2.3.2
اضرب في .
خطوة 7.2.4
الإجابة النهائية هي .
خطوة 7.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 8
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
خطوة 9