حساب التفاضل والتكامل الأمثلة

أوجد التقعر y=x^4 اللوغاريتم الطبيعي لـ x
خطوة 1
اكتب في صورة دالة.
خطوة 2
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.1
اجمع و.
خطوة 2.1.1.3.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.2.1
أخرِج العامل من .
خطوة 2.1.1.3.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.2.2.1
ارفع إلى القوة .
خطوة 2.1.1.3.2.2.2
أخرِج العامل من .
خطوة 2.1.1.3.2.2.3
ألغِ العامل المشترك.
خطوة 2.1.1.3.2.2.4
أعِد كتابة العبارة.
خطوة 2.1.1.3.2.2.5
اقسِم على .
خطوة 2.1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.3.4
أعِد ترتيب الحدود.
خطوة 2.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.2.2.3
مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.2.5
اجمع و.
خطوة 2.1.2.2.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.6.1
أخرِج العامل من .
خطوة 2.1.2.2.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.6.2.1
ارفع إلى القوة .
خطوة 2.1.2.2.6.2.2
أخرِج العامل من .
خطوة 2.1.2.2.6.2.3
ألغِ العامل المشترك.
خطوة 2.1.2.2.6.2.4
أعِد كتابة العبارة.
خطوة 2.1.2.2.6.2.5
اقسِم على .
خطوة 2.1.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
طبّق خاصية التوزيع.
خطوة 2.1.2.3.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.2.1
اضرب في .
خطوة 2.1.2.3.2.2
أضف و.
خطوة 2.1.2.3.3
أعِد ترتيب الحدود.
خطوة 2.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2.2
اطرح من كلا المتعادلين.
خطوة 2.2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
اقسِم كل حد في على .
خطوة 2.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.2.1.2
أعِد كتابة العبارة.
خطوة 2.2.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.2.2.1
ألغِ العامل المشترك.
خطوة 2.2.3.2.2.2
اقسِم على .
خطوة 2.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.3.1.2
أعِد كتابة العبارة.
خطوة 2.2.3.3.2
انقُل السالب أمام الكسر.
خطوة 2.2.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 2.2.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2.2.6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.1
أعِد كتابة المعادلة في صورة .
خطوة 2.2.6.2
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 3
أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 3.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
ارفع إلى القوة .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.1.5
بسّط بنقل داخل اللوغاريتم.
خطوة 5.2.1.6
ارفع إلى القوة .
خطوة 5.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
ارفع إلى القوة .
خطوة 6.2.1.4
اضرب في .
خطوة 6.2.1.5
بسّط بنقل داخل اللوغاريتم.
خطوة 6.2.2
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 7
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
خطوة 8