إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.1.2.1
طبّق خاصية التوزيع.
خطوة 1.1.2.2
طبّق خاصية التوزيع.
خطوة 1.1.2.3
طبّق خاصية التوزيع.
خطوة 1.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 1.1.3.1
بسّط كل حد.
خطوة 1.1.3.1.1
اضرب في .
خطوة 1.1.3.1.2
انقُل إلى يسار .
خطوة 1.1.3.1.3
اضرب في .
خطوة 1.1.3.2
اطرح من .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.5
أوجِد المشتقة.
خطوة 1.1.5.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.4
بسّط العبارة.
خطوة 1.1.5.4.1
أضف و.
خطوة 1.1.5.4.2
اضرب في .
خطوة 1.1.5.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.5.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.9
اضرب في .
خطوة 1.1.5.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.11
أضف و.
خطوة 1.1.6
بسّط.
خطوة 1.1.6.1
طبّق خاصية التوزيع.
خطوة 1.1.6.2
طبّق خاصية التوزيع.
خطوة 1.1.6.3
طبّق خاصية التوزيع.
خطوة 1.1.6.4
جمّع الحدود.
خطوة 1.1.6.4.1
ارفع إلى القوة .
خطوة 1.1.6.4.2
ارفع إلى القوة .
خطوة 1.1.6.4.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6.4.4
أضف و.
خطوة 1.1.6.4.5
اضرب في .
خطوة 1.1.6.4.6
انقُل إلى يسار .
خطوة 1.1.6.4.7
اضرب في .
خطوة 1.1.6.4.8
اطرح من .
خطوة 1.1.6.4.9
أضف و.
خطوة 1.1.6.4.10
اطرح من .
خطوة 1.1.6.4.11
أضف و.
خطوة 1.2
أوجِد المشتق الثاني.
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
احسِب قيمة .
خطوة 1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2.3
اضرب في .
خطوة 1.2.3
احسِب قيمة .
خطوة 1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3.3
اضرب في .
خطوة 1.2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4.2
أضف و.
خطوة 1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2
أضف إلى كلا المتعادلين.
خطوة 2.3
اقسِم كل حد في على وبسّط.
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اقسِم على .
خطوة 3
خطوة 3.1
عوّض بقيمة في لإيجاد قيمة .
خطوة 3.1.1
استبدِل المتغير بـ في العبارة.
خطوة 3.1.2
بسّط النتيجة.
خطوة 3.1.2.1
اطرح من .
خطوة 3.1.2.2
ارفع إلى القوة .
خطوة 3.1.2.3
اضرب في .
خطوة 3.1.2.4
اطرح من .
خطوة 3.1.2.5
الإجابة النهائية هي .
خطوة 3.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
اطرح من .
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
خطوة 8