إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الأول.
خطوة 2.1.1
أوجِد المشتقة.
خطوة 2.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2
احسِب قيمة .
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
اضرب في .
خطوة 2.1.3
احسِب قيمة .
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.3
اضرب في .
خطوة 2.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.4.2
أضف و.
خطوة 2.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 3
خطوة 3.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 3.2
أخرِج العامل من .
خطوة 3.2.1
أخرِج العامل من .
خطوة 3.2.2
أخرِج العامل من .
خطوة 3.2.3
أخرِج العامل من .
خطوة 3.2.4
أخرِج العامل من .
خطوة 3.2.5
أخرِج العامل من .
خطوة 3.3
اقسِم كل حد في على وبسّط.
خطوة 3.3.1
اقسِم كل حد في على .
خطوة 3.3.2
بسّط الطرف الأيسر.
خطوة 3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.2
اقسِم على .
خطوة 3.3.3
بسّط الطرف الأيمن.
خطوة 3.3.3.1
اقسِم على .
خطوة 3.4
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.5
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.6
بسّط.
خطوة 3.6.1
بسّط بَسْط الكسر.
خطوة 3.6.1.1
ارفع إلى القوة .
خطوة 3.6.1.2
اضرب .
خطوة 3.6.1.2.1
اضرب في .
خطوة 3.6.1.2.2
اضرب في .
خطوة 3.6.1.3
اطرح من .
خطوة 3.6.1.4
أعِد كتابة بالصيغة .
خطوة 3.6.1.5
أعِد كتابة بالصيغة .
خطوة 3.6.1.6
أعِد كتابة بالصيغة .
خطوة 3.6.1.7
أعِد كتابة بالصيغة .
خطوة 3.6.1.8
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.6.1.9
انقُل إلى يسار .
خطوة 3.6.2
اضرب في .
خطوة 3.6.3
بسّط .
خطوة 3.7
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 3.7.1
بسّط بَسْط الكسر.
خطوة 3.7.1.1
ارفع إلى القوة .
خطوة 3.7.1.2
اضرب .
خطوة 3.7.1.2.1
اضرب في .
خطوة 3.7.1.2.2
اضرب في .
خطوة 3.7.1.3
اطرح من .
خطوة 3.7.1.4
أعِد كتابة بالصيغة .
خطوة 3.7.1.5
أعِد كتابة بالصيغة .
خطوة 3.7.1.6
أعِد كتابة بالصيغة .
خطوة 3.7.1.7
أعِد كتابة بالصيغة .
خطوة 3.7.1.8
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.7.1.9
انقُل إلى يسار .
خطوة 3.7.2
اضرب في .
خطوة 3.7.3
بسّط .
خطوة 3.7.4
غيّر إلى .
خطوة 3.8
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 3.8.1
بسّط بَسْط الكسر.
خطوة 3.8.1.1
ارفع إلى القوة .
خطوة 3.8.1.2
اضرب .
خطوة 3.8.1.2.1
اضرب في .
خطوة 3.8.1.2.2
اضرب في .
خطوة 3.8.1.3
اطرح من .
خطوة 3.8.1.4
أعِد كتابة بالصيغة .
خطوة 3.8.1.5
أعِد كتابة بالصيغة .
خطوة 3.8.1.6
أعِد كتابة بالصيغة .
خطوة 3.8.1.7
أعِد كتابة بالصيغة .
خطوة 3.8.1.8
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.8.1.9
انقُل إلى يسار .
خطوة 3.8.2
اضرب في .
خطوة 3.8.3
بسّط .
خطوة 3.8.4
غيّر إلى .
خطوة 3.9
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 4
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
خطوة 5
لا توجد نقاط تجعل قيمة المشتق مساوية لـ أو غير معرّفة. وتمثل الفترة اللازمة للتحقق من تزايد أو تناقص .
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
بسّط عن طريق الجمع والطرح.
خطوة 6.2.2.1
اطرح من .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 7
نتيجة التعويض بـ في هي ، وهي موجبة، لذا فإن الرسم البياني يتزايد خلال الفترة .
تزايد خلال نظرًا إلى أن
خطوة 8
يعني التزايد على مدى الفترة أن الدالة تتزايد دائمًا.
متزايد دائمًا
خطوة 9