إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الأول.
خطوة 2.1.1
أوجِد المشتقة.
خطوة 2.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2
احسِب قيمة .
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.7
اضرب في .
خطوة 2.1.2.8
أضف و.
خطوة 2.1.2.9
اجمع و.
خطوة 2.1.2.10
احذِف العامل المشترك لـ و.
خطوة 2.1.2.10.1
أخرِج العامل من .
خطوة 2.1.2.10.2
ألغِ العوامل المشتركة.
خطوة 2.1.2.10.2.1
أخرِج العامل من .
خطوة 2.1.2.10.2.2
أخرِج العامل من .
خطوة 2.1.2.10.2.3
أخرِج العامل من .
خطوة 2.1.2.10.2.4
ألغِ العامل المشترك.
خطوة 2.1.2.10.2.5
أعِد كتابة العبارة.
خطوة 2.1.2.11
اجمع و.
خطوة 2.1.2.12
انقُل السالب أمام الكسر.
خطوة 2.1.3
جمّع الحدود.
خطوة 2.1.3.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 2.1.3.2
اجمع البسوط على القاسم المشترك.
خطوة 2.1.3.3
اطرح من .
خطوة 2.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 3
خطوة 3.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 3.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3.3
أضف إلى كلا المتعادلين.
خطوة 4
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 5
خطوة 5.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 6
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 7
استبعِد الفترات غير الموجودة في النطاق.
خطوة 8
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
خطوة 8.2.1
اطرح من .
خطوة 8.2.2
اطرح من .
خطوة 8.2.3
اقسِم على .
خطوة 8.2.4
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 9
استبعِد الفترات غير الموجودة في النطاق.
خطوة 10
خطوة 10.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2
بسّط النتيجة.
خطوة 10.2.1
اطرح من .
خطوة 10.2.2
اطرح من .
خطوة 10.2.3
الإجابة النهائية هي .
خطوة 10.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 11
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 12