حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة y=x^2-8 اللوغاريتم الطبيعي لـ x
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3
اجمع و.
خطوة 1.1.2.4
انقُل السالب أمام الكسر.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2.3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب كل حد في في .
خطوة 2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1.1
انقُل .
خطوة 2.3.2.1.1.2
اضرب في .
خطوة 2.3.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
اضرب في .
خطوة 2.4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.1.2
اقسِم على .
خطوة 2.4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.3.1
اقسِم على .
خطوة 2.4.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.4.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.4.1
أعِد كتابة بالصيغة .
خطوة 2.4.4.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
ارفع إلى القوة .
خطوة 4.1.2.2
بسّط بنقل داخل اللوغاريتم.
خطوة 4.1.2.3
ارفع إلى القوة .
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
اللوغاريتم الطبيعي لعدد سالب يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
خطوة 4.3
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
خطوة 4.4
اسرِد جميع النقاط.
خطوة 5