حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة x(5-x)^(2/3)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.4
اجمع و.
خطوة 1.1.5
اجمع البسوط على القاسم المشترك.
خطوة 1.1.6
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1
اضرب في .
خطوة 1.1.6.2
اطرح من .
خطوة 1.1.7
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.7.1
انقُل السالب أمام الكسر.
خطوة 1.1.7.2
اجمع و.
خطوة 1.1.7.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.7.4
اجمع و.
خطوة 1.1.8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.10
أضف و.
خطوة 1.1.11
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.12
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.13
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.13.1
اضرب في .
خطوة 1.1.13.2
اجمع و.
خطوة 1.1.13.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.13.3.1
اضرب في .
خطوة 1.1.13.3.2
انقُل السالب أمام الكسر.
خطوة 1.1.14
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.15
اضرب في .
خطوة 1.1.16
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.17
اجمع و.
خطوة 1.1.18
اجمع البسوط على القاسم المشترك.
خطوة 1.1.19
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.19.1
انقُل .
خطوة 1.1.19.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.19.3
اجمع البسوط على القاسم المشترك.
خطوة 1.1.19.4
أضف و.
خطوة 1.1.19.5
اقسِم على .
خطوة 1.1.20
بسّط .
خطوة 1.1.21
انقُل إلى يسار .
خطوة 1.1.22
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.22.1
طبّق خاصية التوزيع.
خطوة 1.1.22.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.22.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.22.2.1.1
اضرب في .
خطوة 1.1.22.2.1.2
اضرب في .
خطوة 1.1.22.2.2
اطرح من .
خطوة 1.1.22.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.22.3.1
أخرِج العامل من .
خطوة 1.1.22.3.2
أخرِج العامل من .
خطوة 1.1.22.3.3
أخرِج العامل من .
خطوة 1.1.22.4
أخرِج العامل من .
خطوة 1.1.22.5
أعِد كتابة بالصيغة .
خطوة 1.1.22.6
أخرِج العامل من .
خطوة 1.1.22.7
أعِد كتابة بالصيغة .
خطوة 1.1.22.8
انقُل السالب أمام الكسر.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
اقسِم كل حد في على .
خطوة 2.3.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.1.2.1.2
اقسِم على .
خطوة 2.3.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.3.1
اقسِم على .
خطوة 2.3.2
أضف إلى كلا المتعادلين.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 3.1.2
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 3.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
لحذف الجذر في المتعادل الأيسر، كعِّب كلا المتعادلين.
خطوة 3.3.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
استخدِم لكتابة في صورة .
خطوة 3.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.3.2.2.1.2
ارفع إلى القوة .
خطوة 3.3.2.2.1.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.2.2.1.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 3.3.2.2.1.4
بسّط.
خطوة 3.3.2.2.1.5
طبّق خاصية التوزيع.
خطوة 3.3.2.2.1.6
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1.6.1
اضرب في .
خطوة 3.3.2.2.1.6.2
اضرب في .
خطوة 3.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
اطرح من كلا المتعادلين.
خطوة 3.3.3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.2.1
اقسِم كل حد في على .
خطوة 3.3.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.2.1.2
اقسِم على .
خطوة 3.3.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.2.3.1
اقسِم على .
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
اطرح من .
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
اضرب في .
خطوة 4.2.2.1.2
اطرح من .
خطوة 4.2.2.1.3
أعِد كتابة بالصيغة .
خطوة 4.2.2.1.4
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.2
أعِد كتابة العبارة.
خطوة 4.2.2.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.2.3.2
اضرب في .
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5