حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة y=x-4 اللوغاريتم الطبيعي لـ 3x-9
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.7
اضرب في .
خطوة 1.1.2.8
أضف و.
خطوة 1.1.2.9
اجمع و.
خطوة 1.1.2.10
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.10.1
أخرِج العامل من .
خطوة 1.1.2.10.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.10.2.1
أخرِج العامل من .
خطوة 1.1.2.10.2.2
أخرِج العامل من .
خطوة 1.1.2.10.2.3
أخرِج العامل من .
خطوة 1.1.2.10.2.4
ألغِ العامل المشترك.
خطوة 1.1.2.10.2.5
أعِد كتابة العبارة.
خطوة 1.1.2.11
اجمع و.
خطوة 1.1.2.12
انقُل السالب أمام الكسر.
خطوة 1.1.3
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 1.1.3.2
اجمع البسوط على القاسم المشترك.
خطوة 1.1.3.3
اطرح من .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
أضف إلى كلا المتعادلين.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
أضف إلى كلا المتعادلين.
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
اطرح من .
خطوة 4.1.2.3
بسّط بنقل داخل اللوغاريتم.
خطوة 4.1.2.4
ارفع إلى القوة .
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
اضرب في .
خطوة 4.2.2.1.2
اطرح من .
خطوة 4.2.2.1.3
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
خطوة 4.2.2.2
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5