إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
اجمع و.
خطوة 1.1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.5
بسّط العبارة.
خطوة 1.1.3.5.1
أضف و.
خطوة 1.1.3.5.2
اضرب في .
خطوة 1.1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.7
اضرب في .
خطوة 1.1.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.5
اجمع البسوط على القاسم المشترك.
خطوة 1.1.6
بسّط.
خطوة 1.1.6.1
بسّط بَسْط الكسر.
خطوة 1.1.6.1.1
بسّط كل حد.
خطوة 1.1.6.1.1.1
طبّق خاصية التوزيع.
خطوة 1.1.6.1.1.2
اضرب .
خطوة 1.1.6.1.1.2.1
أعِد ترتيب و.
خطوة 1.1.6.1.1.2.2
بسّط بنقل داخل اللوغاريتم.
خطوة 1.1.6.1.2
أعِد ترتيب العوامل في .
خطوة 1.1.6.2
أعِد ترتيب الحدود.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
خطوة 3
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
عيّن قيمة المتغير المستقل في بحيث تصبح أصغر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.4
اطرح من كلا طرفي المتباينة.
خطوة 3.5
عيّن قيمة المتغير المستقل في بحيث تصبح أصغر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.6
أوجِد قيمة .
خطوة 3.6.1
خُذ الجذر المحدد لكلا المتباينين لحذف الأُس على الطرف الأيسر.
خطوة 3.6.2
بسّط المعادلة.
خطوة 3.6.2.1
بسّط الطرف الأيسر.
خطوة 3.6.2.1.1
أخرِج الحدود من تحت الجذر.
خطوة 3.6.2.2
بسّط الطرف الأيمن.
خطوة 3.6.2.2.1
بسّط .
خطوة 3.6.2.2.1.1
أعِد كتابة بالصيغة .
خطوة 3.6.2.2.1.2
أخرِج الحدود من تحت الجذر.
خطوة 3.6.3
اطرح من كلا طرفي المتباينة.
خطوة 3.7
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
أضف و.
خطوة 4.1.2.2
بسّط بنقل داخل اللوغاريتم.
خطوة 4.1.2.3
ارفع إلى القوة .
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
أضف و.
خطوة 4.2.2.2
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5