إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة.
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2.2
أعِد كتابة بالصيغة .
خطوة 1.1.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.6
اضرب الأُسس في .
خطوة 1.1.2.6.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.2.6.2
اضرب في .
خطوة 1.1.2.7
اضرب في .
خطوة 1.1.2.8
ارفع إلى القوة .
خطوة 1.1.2.9
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.2.10
اطرح من .
خطوة 1.1.2.11
اضرب في .
خطوة 1.1.2.12
اضرب في .
خطوة 1.1.2.13
أضف و.
خطوة 1.1.3
بسّط.
خطوة 1.1.3.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.3.2
اجمع و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 2.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2.3
اضرب كل حد في في لحذف الكسور.
خطوة 2.3.1
اضرب كل حد في في .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
بسّط كل حد.
خطوة 2.3.2.1.1
اضرب في بجمع الأُسس.
خطوة 2.3.2.1.1.1
انقُل .
خطوة 2.3.2.1.1.2
اضرب في .
خطوة 2.3.2.1.1.2.1
ارفع إلى القوة .
خطوة 2.3.2.1.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.2.1.1.3
أضف و.
خطوة 2.3.2.1.2
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.2.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2.2
أعِد كتابة العبارة.
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اضرب في .
خطوة 2.4
أوجِد حل المعادلة.
خطوة 2.4.1
اطرح من كلا المتعادلين.
خطوة 2.4.2
اقسِم كل حد في على وبسّط.
خطوة 2.4.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2
بسّط الطرف الأيسر.
خطوة 2.4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.4.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.1.2
اقسِم على .
خطوة 2.4.2.3
بسّط الطرف الأيمن.
خطوة 2.4.2.3.1
اقسِم على .
خطوة 2.4.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.4.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.4.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 3
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
خطوة 4
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
أوجِد قيمة .
خطوة 4.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.2.2
بسّط .
خطوة 4.2.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 5
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
اضرب في .
خطوة 6.2.1.2
ارفع إلى القوة .
خطوة 6.2.1.3
اقسِم على .
خطوة 6.2.2
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
اضرب في .
خطوة 7.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.2.1.3
اقسِم على .
خطوة 7.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9