إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة.
خطوة 1.1.2.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2
انقُل إلى يسار .
خطوة 1.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.6
بسّط العبارة.
خطوة 1.1.2.6.1
أضف و.
خطوة 1.1.2.6.2
اضرب في .
خطوة 1.1.3
ارفع إلى القوة .
خطوة 1.1.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.5
أضف و.
خطوة 1.1.6
بسّط.
خطوة 1.1.6.1
طبّق خاصية التوزيع.
خطوة 1.1.6.2
طبّق خاصية التوزيع.
خطوة 1.1.6.3
بسّط بَسْط الكسر.
خطوة 1.1.6.3.1
بسّط كل حد.
خطوة 1.1.6.3.1.1
اضرب في بجمع الأُسس.
خطوة 1.1.6.3.1.1.1
انقُل .
خطوة 1.1.6.3.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6.3.1.1.3
أضف و.
خطوة 1.1.6.3.1.2
اضرب في .
خطوة 1.1.6.3.2
اطرح من .
خطوة 1.1.6.4
أخرِج العامل من .
خطوة 1.1.6.4.1
أخرِج العامل من .
خطوة 1.1.6.4.2
أخرِج العامل من .
خطوة 1.1.6.4.3
أخرِج العامل من .
خطوة 1.1.6.5
بسّط القاسم.
خطوة 1.1.6.5.1
أعِد كتابة بالصيغة .
خطوة 1.1.6.5.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.1.6.5.3
طبّق قاعدة الضرب على .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
أوجِد قيمة في المعادلة.
خطوة 2.3.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2.2
أوجِد قيمة في .
خطوة 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.3.2.2.2
بسّط .
خطوة 2.3.2.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.3.2.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.3.2.2.2.3
زائد أو ناقص يساوي .
خطوة 2.3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.3.2
أوجِد قيمة في .
خطوة 2.3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.3.3.2.3
بسّط .
خطوة 2.3.3.2.3.1
أعِد كتابة بالصيغة .
خطوة 2.3.3.2.3.1.1
أخرِج العامل من .
خطوة 2.3.3.2.3.1.2
أعِد كتابة بالصيغة .
خطوة 2.3.3.2.3.2
أخرِج الحدود من تحت الجذر.
خطوة 2.3.3.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.3.3.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.3.3.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.3.3.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.3.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
أوجِد قيمة .
خطوة 4.2.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.2.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2.2
أوجِد قيمة في .
خطوة 4.2.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2.2.2
اطرح من كلا المتعادلين.
خطوة 4.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.3.2
أوجِد قيمة في .
خطوة 4.2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.3.2.2
أضف إلى كلا المتعادلين.
خطوة 4.2.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4.3
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 5
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط بَسْط الكسر.
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اطرح من .
خطوة 6.2.1.3
ارفع إلى القوة .
خطوة 6.2.2
بسّط القاسم.
خطوة 6.2.2.1
أضف و.
خطوة 6.2.2.2
اطرح من .
خطوة 6.2.2.3
ارفع إلى القوة .
خطوة 6.2.2.4
ارفع إلى القوة .
خطوة 6.2.3
بسّط العبارة.
خطوة 6.2.3.1
اضرب في .
خطوة 6.2.3.2
اضرب في .
خطوة 6.2.3.3
اقسِم على .
خطوة 6.2.4
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط بَسْط الكسر.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اطرح من .
خطوة 7.2.1.3
ارفع إلى القوة .
خطوة 7.2.2
بسّط القاسم.
خطوة 7.2.2.1
أضف و.
خطوة 7.2.2.2
اطرح من .
خطوة 7.2.2.3
ارفع إلى القوة .
خطوة 7.2.2.4
ارفع إلى القوة .
خطوة 7.2.3
بسّط العبارة.
خطوة 7.2.3.1
اضرب في .
خطوة 7.2.3.2
اضرب في .
خطوة 7.2.3.3
اقسِم على .
خطوة 7.2.4
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
خطوة 8.2.1
بسّط بَسْط الكسر.
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اطرح من .
خطوة 8.2.1.3
ارفع إلى القوة .
خطوة 8.2.1.4
اضرب في .
خطوة 8.2.2
بسّط القاسم.
خطوة 8.2.2.1
أضف و.
خطوة 8.2.2.2
اطرح من .
خطوة 8.2.2.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 8.2.2.4
ارفع إلى القوة .
خطوة 8.2.2.5
اضرب في .
خطوة 8.2.3
انقُل السالب أمام الكسر.
خطوة 8.2.4
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 9
خطوة 9.1
استبدِل المتغير بـ في العبارة.
خطوة 9.2
بسّط النتيجة.
خطوة 9.2.1
بسّط بَسْط الكسر.
خطوة 9.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 9.2.1.2
اطرح من .
خطوة 9.2.1.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 9.2.1.4
اضرب في .
خطوة 9.2.2
بسّط القاسم.
خطوة 9.2.2.1
أضف و.
خطوة 9.2.2.2
اطرح من .
خطوة 9.2.2.3
ارفع إلى القوة .
خطوة 9.2.2.4
ارفع إلى القوة .
خطوة 9.2.3
بسّط العبارة.
خطوة 9.2.3.1
اضرب في .
خطوة 9.2.3.2
انقُل السالب أمام الكسر.
خطوة 9.2.4
الإجابة النهائية هي .
خطوة 9.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 10
خطوة 10.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2
بسّط النتيجة.
خطوة 10.2.1
بسّط بَسْط الكسر.
خطوة 10.2.1.1
ارفع إلى القوة .
خطوة 10.2.1.2
اطرح من .
خطوة 10.2.1.3
ارفع إلى القوة .
خطوة 10.2.2
بسّط القاسم.
خطوة 10.2.2.1
أضف و.
خطوة 10.2.2.2
اطرح من .
خطوة 10.2.2.3
ارفع إلى القوة .
خطوة 10.2.2.4
ارفع إلى القوة .
خطوة 10.2.3
بسّط العبارة.
خطوة 10.2.3.1
اضرب في .
خطوة 10.2.3.2
اضرب في .
خطوة 10.2.3.3
اقسِم على .
خطوة 10.2.4
الإجابة النهائية هي .
خطوة 10.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 11
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
خطوة 11.2.1
بسّط بَسْط الكسر.
خطوة 11.2.1.1
ارفع إلى القوة .
خطوة 11.2.1.2
اطرح من .
خطوة 11.2.1.3
ارفع إلى القوة .
خطوة 11.2.2
بسّط القاسم.
خطوة 11.2.2.1
أضف و.
خطوة 11.2.2.2
اطرح من .
خطوة 11.2.2.3
ارفع إلى القوة .
خطوة 11.2.2.4
ارفع إلى القوة .
خطوة 11.2.3
بسّط العبارة.
خطوة 11.2.3.1
اضرب في .
خطوة 11.2.3.2
اضرب في .
خطوة 11.2.3.3
اقسِم على .
خطوة 11.2.4
الإجابة النهائية هي .
خطوة 11.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 12
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 13