حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=-4/(x^2-2x-3)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
انقُل السالب أمام الكسر.
خطوة 1.1.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3
أعِد كتابة بالصيغة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
اضرب في .
خطوة 1.1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.6
اضرب في .
خطوة 1.1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.8
أضف و.
خطوة 1.1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.1
اجمع و.
خطوة 1.1.5.2
أعِد ترتيب عوامل .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.1
اقسِم كل حد في على .
خطوة 2.3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.2.2.1.2
اقسِم على .
خطوة 2.3.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.3.1
اقسِم على .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.4.2.2
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
أوجِد الموضع الذي يكون فيه المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.2.1.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.2.1.2
طبّق قاعدة الضرب على .
خطوة 4.2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.3.2.2
أضف إلى كلا المتعادلين.
خطوة 4.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.4.2.2
اطرح من كلا المتعادلين.
خطوة 4.2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4.3
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 5
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
أضف و.
خطوة 6.2.1.4
اطرح من .
خطوة 6.2.1.5
ارفع إلى القوة .
خطوة 6.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اضرب في .
خطوة 6.2.2.2
اطرح من .
خطوة 6.2.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
اجمع و.
خطوة 6.2.3.2
اضرب في .
خطوة 6.2.4
انقُل السالب أمام الكسر.
خطوة 6.2.5
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
أضف و.
خطوة 7.2.1.4
اطرح من .
خطوة 7.2.1.5
ارفع إلى القوة .
خطوة 7.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اضرب في .
خطوة 7.2.2.2
اطرح من .
خطوة 7.2.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.3.1
اجمع و.
خطوة 7.2.3.2
اضرب في .
خطوة 7.2.4
انقُل السالب أمام الكسر.
خطوة 7.2.5
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.1.3
اطرح من .
خطوة 8.2.1.4
اطرح من .
خطوة 8.2.1.5
ارفع إلى القوة .
خطوة 8.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.2.1
اضرب في .
خطوة 8.2.2.2
اطرح من .
خطوة 8.2.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.3.1
اجمع و.
خطوة 8.2.3.2
اضرب في .
خطوة 8.2.4
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 9
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
استبدِل المتغير بـ في العبارة.
خطوة 9.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1.1
ارفع إلى القوة .
خطوة 9.2.1.2
اضرب في .
خطوة 9.2.1.3
اطرح من .
خطوة 9.2.1.4
اطرح من .
خطوة 9.2.1.5
ارفع إلى القوة .
خطوة 9.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.2.1
اضرب في .
خطوة 9.2.2.2
اطرح من .
خطوة 9.2.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.3.1
اجمع و.
خطوة 9.2.3.2
اضرب في .
خطوة 9.2.4
الإجابة النهائية هي .
خطوة 9.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 10
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 11