إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2
أوجِد المشتقة.
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
بسّط العبارة.
خطوة 1.1.2.3.1
اضرب في .
خطوة 1.1.2.3.2
انقُل إلى يسار .
خطوة 1.1.2.3.3
أعِد كتابة بالصيغة .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
لا يوجد حل
لا يوجد حل
خطوة 3
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
خطوة 4
لا توجد نقاط تجعل قيمة المشتق مساوية لـ أو غير معرّفة. وتمثل الفترة اللازمة للتحقق من تزايد أو تناقص .
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 5.2.3
اضرب .
خطوة 5.2.3.1
أعِد ترتيب و.
خطوة 5.2.3.2
بسّط بنقل داخل اللوغاريتم.
خطوة 5.2.4
الإجابة النهائية هي .
خطوة 6
نتيجة التعويض بـ في هي ، وهي سالبة، لذا فإن الرسم البياني يتناقص خلال الفترة .
تناقص خلال
خطوة 7
يعني التناقص على مدى الفترة أن الدالة تتناقص دائمًا.
متناقص دائمًا
خطوة 8