إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اجمع و.
خطوة 1.1.2.4
اضرب في .
خطوة 1.1.2.5
اجمع و.
خطوة 1.1.2.6
احذِف العامل المشترك لـ و.
خطوة 1.1.2.6.1
أخرِج العامل من .
خطوة 1.1.2.6.2
ألغِ العوامل المشتركة.
خطوة 1.1.2.6.2.1
أخرِج العامل من .
خطوة 1.1.2.6.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.6.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.6.2.4
اقسِم على .
خطوة 1.1.3
احسِب قيمة .
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
احسِب قيمة .
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4.3
اضرب في .
خطوة 1.1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.2
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.1.4
أخرِج العامل من .
خطوة 2.2.1.5
أخرِج العامل من .
خطوة 2.2.2
حلّل إلى عوامل.
خطوة 2.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 2.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
اطرح من كلا المتعادلين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.2
بسّط عن طريق الجمع والطرح.
خطوة 5.2.2.1
أضف و.
خطوة 5.2.2.2
اطرح من .
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
طبّق قاعدة الضرب على .
خطوة 6.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.3
ارفع إلى القوة .
خطوة 6.2.1.4
ألغِ العامل المشترك لـ .
خطوة 6.2.1.4.1
أخرِج العامل من .
خطوة 6.2.1.4.2
ألغِ العامل المشترك.
خطوة 6.2.1.4.3
أعِد كتابة العبارة.
خطوة 6.2.1.5
ألغِ العامل المشترك لـ .
خطوة 6.2.1.5.1
أخرِج العامل من .
خطوة 6.2.1.5.2
ألغِ العامل المشترك.
خطوة 6.2.1.5.3
أعِد كتابة العبارة.
خطوة 6.2.2
أوجِد القاسم المشترك.
خطوة 6.2.2.1
اكتب على هيئة كسر قاسمه .
خطوة 6.2.2.2
اضرب في .
خطوة 6.2.2.3
اضرب في .
خطوة 6.2.2.4
اكتب على هيئة كسر قاسمه .
خطوة 6.2.2.5
اضرب في .
خطوة 6.2.2.6
اضرب في .
خطوة 6.2.3
اجمع البسوط على القاسم المشترك.
خطوة 6.2.4
بسّط كل حد.
خطوة 6.2.4.1
اضرب في .
خطوة 6.2.4.2
اضرب في .
خطوة 6.2.5
بسّط العبارة.
خطوة 6.2.5.1
اطرح من .
خطوة 6.2.5.2
اطرح من .
خطوة 6.2.5.3
انقُل السالب أمام الكسر.
خطوة 6.2.6
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.2
بسّط بطرح الأعداد.
خطوة 7.2.2.1
اطرح من .
خطوة 7.2.2.2
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9