إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.2.3.1
أخرِج العامل من .
خطوة 2.2.3.2
أخرِج العامل من .
خطوة 2.2.3.3
أخرِج العامل من .
خطوة 2.2.4
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.4.2.2
بسّط .
خطوة 2.4.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.2.2.3
زائد أو ناقص يساوي .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
أضف إلى كلا المتعادلين.
خطوة 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.5.2.3
أي جذر لـ هو .
خطوة 2.5.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.5.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.5.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
ارفع إلى القوة .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.2
اطرح من .
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
استخدِم قاعدة القوة لتوزيع الأُس.
خطوة 6.2.1.1.1
طبّق قاعدة الضرب على .
خطوة 6.2.1.1.2
طبّق قاعدة الضرب على .
خطوة 6.2.1.2
ارفع إلى القوة .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.1.4
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.5
ارفع إلى القوة .
خطوة 6.2.1.6
اجمع و.
خطوة 6.2.1.7
استخدِم قاعدة القوة لتوزيع الأُس.
خطوة 6.2.1.7.1
طبّق قاعدة الضرب على .
خطوة 6.2.1.7.2
طبّق قاعدة الضرب على .
خطوة 6.2.1.8
ارفع إلى القوة .
خطوة 6.2.1.9
اضرب في .
خطوة 6.2.1.10
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.11
ارفع إلى القوة .
خطوة 6.2.1.12
اجمع و.
خطوة 6.2.1.13
انقُل السالب أمام الكسر.
خطوة 6.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 6.2.3.1
اضرب في .
خطوة 6.2.3.2
اضرب في .
خطوة 6.2.4
اجمع البسوط على القاسم المشترك.
خطوة 6.2.5
بسّط بَسْط الكسر.
خطوة 6.2.5.1
اضرب في .
خطوة 6.2.5.2
اطرح من .
خطوة 6.2.6
انقُل السالب أمام الكسر.
خطوة 6.2.7
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
طبّق قاعدة الضرب على .
خطوة 7.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.2.1.3
ارفع إلى القوة .
خطوة 7.2.1.4
اجمع و.
خطوة 7.2.1.5
طبّق قاعدة الضرب على .
خطوة 7.2.1.6
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 7.2.1.7
ارفع إلى القوة .
خطوة 7.2.1.8
اجمع و.
خطوة 7.2.1.9
انقُل السالب أمام الكسر.
خطوة 7.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 7.2.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 7.2.3.1
اضرب في .
خطوة 7.2.3.2
اضرب في .
خطوة 7.2.4
اجمع البسوط على القاسم المشترك.
خطوة 7.2.5
بسّط بَسْط الكسر.
خطوة 7.2.5.1
اضرب في .
خطوة 7.2.5.2
اطرح من .
خطوة 7.2.6
انقُل السالب أمام الكسر.
خطوة 7.2.7
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
خطوة 8.2.1
بسّط كل حد.
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.1.3
ارفع إلى القوة .
خطوة 8.2.1.4
اضرب في .
خطوة 8.2.2
اطرح من .
خطوة 8.2.3
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 9
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 10