إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.4.2
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أخرِج العامل من .
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل من .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
اطرح من كلا المتعادلين.
خطوة 2.5.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.5.2.2.1
اقسِم كل حد في على .
خطوة 2.5.2.2.2
بسّط الطرف الأيسر.
خطوة 2.5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.5.2.2.2.1.2
اقسِم على .
خطوة 2.5.2.2.3
بسّط الطرف الأيمن.
خطوة 2.5.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 2.5.2.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.5.2.4
بسّط .
خطوة 2.5.2.4.1
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.2
أخرِج الحدود من تحت الجذر.
خطوة 2.5.2.4.3
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.4
اضرب في .
خطوة 2.5.2.4.5
جمّع وبسّط القاسم.
خطوة 2.5.2.4.5.1
اضرب في .
خطوة 2.5.2.4.5.2
ارفع إلى القوة .
خطوة 2.5.2.4.5.3
ارفع إلى القوة .
خطوة 2.5.2.4.5.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.5.2.4.5.5
أضف و.
خطوة 2.5.2.4.5.6
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.5.6.1
استخدِم لكتابة في صورة .
خطوة 2.5.2.4.5.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.5.2.4.5.6.3
اجمع و.
خطوة 2.5.2.4.5.6.4
ألغِ العامل المشترك لـ .
خطوة 2.5.2.4.5.6.4.1
ألغِ العامل المشترك.
خطوة 2.5.2.4.5.6.4.2
أعِد كتابة العبارة.
خطوة 2.5.2.4.5.6.5
احسِب قيمة الأُس.
خطوة 2.5.2.4.6
بسّط بَسْط الكسر.
خطوة 2.5.2.4.6.1
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 2.5.2.4.6.2
اضرب في .
خطوة 2.5.2.4.7
اجمع و.
خطوة 2.5.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.5.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.5.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 8