حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=64x^2+54/x-3
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أعِد كتابة بالصيغة .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
اضرب في .
خطوة 1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.2.1
اجمع و.
خطوة 1.1.5.2.2
انقُل السالب أمام الكسر.
خطوة 1.1.5.2.3
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2.3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب كل حد في في .
خطوة 2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1.1
انقُل .
خطوة 2.3.2.1.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1.2.1
ارفع إلى القوة .
خطوة 2.3.2.1.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.2.1.1.3
أضف و.
خطوة 2.3.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
اضرب في .
خطوة 2.4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2
اطرح من كلا المتعادلين.
خطوة 2.4.3
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.3.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.3.1.1
أخرِج العامل من .
خطوة 2.4.3.1.2
أخرِج العامل من .
خطوة 2.4.3.1.3
أخرِج العامل من .
خطوة 2.4.3.2
أعِد كتابة بالصيغة .
خطوة 2.4.3.3
أعِد كتابة بالصيغة .
خطوة 2.4.3.4
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 2.4.3.5
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.3.5.1
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.3.5.1.1
طبّق قاعدة الضرب على .
خطوة 2.4.3.5.1.2
ارفع إلى القوة .
خطوة 2.4.3.5.1.3
اضرب في .
خطوة 2.4.3.5.1.4
ارفع إلى القوة .
خطوة 2.4.3.5.2
احذِف الأقواس غير الضرورية.
خطوة 2.4.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.5.2.1
أضف إلى كلا المتعادلين.
خطوة 2.4.5.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.5.2.2.1
اقسِم كل حد في على .
خطوة 2.4.5.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.5.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.5.2.2.2.1.2
اقسِم على .
خطوة 2.4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.4.6.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.4.6.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.3.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.3.1.1
ارفع إلى القوة .
خطوة 2.4.6.2.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.3.1.2.1
اضرب في .
خطوة 2.4.6.2.3.1.2.2
اضرب في .
خطوة 2.4.6.2.3.1.3
اطرح من .
خطوة 2.4.6.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.3.1.5
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.3.1.6
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.3.1.7
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.3.1.7.1
أخرِج العامل من .
خطوة 2.4.6.2.3.1.7.2
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.3.1.8
أخرِج الحدود من تحت الجذر.
خطوة 2.4.6.2.3.1.9
انقُل إلى يسار .
خطوة 2.4.6.2.3.2
اضرب في .
خطوة 2.4.6.2.3.3
بسّط .
خطوة 2.4.6.2.4
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.4.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.4.1.1
ارفع إلى القوة .
خطوة 2.4.6.2.4.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.4.1.2.1
اضرب في .
خطوة 2.4.6.2.4.1.2.2
اضرب في .
خطوة 2.4.6.2.4.1.3
اطرح من .
خطوة 2.4.6.2.4.1.4
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.4.1.5
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.4.1.6
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.4.1.7
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.4.1.7.1
أخرِج العامل من .
خطوة 2.4.6.2.4.1.7.2
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.4.1.8
أخرِج الحدود من تحت الجذر.
خطوة 2.4.6.2.4.1.9
انقُل إلى يسار .
خطوة 2.4.6.2.4.2
اضرب في .
خطوة 2.4.6.2.4.3
بسّط .
خطوة 2.4.6.2.4.4
غيّر إلى .
خطوة 2.4.6.2.4.5
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.4.6
أخرِج العامل من .
خطوة 2.4.6.2.4.7
أخرِج العامل من .
خطوة 2.4.6.2.4.8
انقُل السالب أمام الكسر.
خطوة 2.4.6.2.5
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.5.1.1
ارفع إلى القوة .
خطوة 2.4.6.2.5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.5.1.2.1
اضرب في .
خطوة 2.4.6.2.5.1.2.2
اضرب في .
خطوة 2.4.6.2.5.1.3
اطرح من .
خطوة 2.4.6.2.5.1.4
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.5.1.5
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.5.1.6
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.5.1.7
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.6.2.5.1.7.1
أخرِج العامل من .
خطوة 2.4.6.2.5.1.7.2
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.5.1.8
أخرِج الحدود من تحت الجذر.
خطوة 2.4.6.2.5.1.9
انقُل إلى يسار .
خطوة 2.4.6.2.5.2
اضرب في .
خطوة 2.4.6.2.5.3
بسّط .
خطوة 2.4.6.2.5.4
غيّر إلى .
خطوة 2.4.6.2.5.5
أعِد كتابة بالصيغة .
خطوة 2.4.6.2.5.6
أخرِج العامل من .
خطوة 2.4.6.2.5.7
أخرِج العامل من .
خطوة 2.4.6.2.5.8
انقُل السالب أمام الكسر.
خطوة 2.4.6.2.6
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 2.4.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
أوجِد الموضع الذي يكون فيه المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.2.2.3
زائد أو ناقص يساوي .
خطوة 5
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
اضرب في .
خطوة 6.2.1.2
ارفع إلى القوة .
خطوة 6.2.1.3
اقسِم على .
خطوة 6.2.1.4
اضرب في .
خطوة 6.2.2
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
اضرب في .
خطوة 7.2.1.2
ارفع إلى القوة .
خطوة 7.2.1.3
اقسِم على .
خطوة 7.2.1.4
اضرب في .
خطوة 7.2.2
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
اضرب في .
خطوة 8.2.1.2
ارفع إلى القوة .
خطوة 8.2.1.3
اقسِم على .
خطوة 8.2.1.4
اضرب في .
خطوة 8.2.2
اطرح من .
خطوة 8.2.3
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 9
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 10