إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتق الأول.
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
احسِب قيمة .
خطوة 1.1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
اضرب في .
خطوة 1.1.1.3
احسِب قيمة .
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3
اضرب في .
خطوة 1.1.1.4
احسِب قيمة .
خطوة 1.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.4.3
اضرب في .
خطوة 1.1.1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.1.1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.5.2
أضف و.
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 1.2.2.1
أخرِج العامل من .
خطوة 1.2.2.1.1
أخرِج العامل من .
خطوة 1.2.2.1.2
أخرِج العامل من .
خطوة 1.2.2.1.3
أخرِج العامل من .
خطوة 1.2.2.1.4
أخرِج العامل من .
خطوة 1.2.2.1.5
أخرِج العامل من .
خطوة 1.2.2.2
حلّل إلى عوامل.
خطوة 1.2.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.2.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 1.2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4.2
أضف إلى كلا المتعادلين.
خطوة 1.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.5.2
اطرح من كلا المتعادلين.
خطوة 1.2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
خطوة 1.3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
خطوة 1.4.1
احسِب القيمة في .
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
خطوة 1.4.1.2.1
بسّط كل حد.
خطوة 1.4.1.2.1.1
اضرب في بجمع الأُسس.
خطوة 1.4.1.2.1.1.1
اضرب في .
خطوة 1.4.1.2.1.1.1.1
ارفع إلى القوة .
خطوة 1.4.1.2.1.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.4.1.2.1.1.2
أضف و.
خطوة 1.4.1.2.1.2
ارفع إلى القوة .
خطوة 1.4.1.2.1.3
ارفع إلى القوة .
خطوة 1.4.1.2.1.4
اضرب في .
خطوة 1.4.1.2.1.5
اضرب في .
خطوة 1.4.1.2.2
بسّط عن طريق الجمع والطرح.
خطوة 1.4.1.2.2.1
أضف و.
خطوة 1.4.1.2.2.2
اطرح من .
خطوة 1.4.1.2.2.3
أضف و.
خطوة 1.4.2
احسِب القيمة في .
خطوة 1.4.2.1
عوّض بقيمة التي تساوي .
خطوة 1.4.2.2
بسّط.
خطوة 1.4.2.2.1
بسّط كل حد.
خطوة 1.4.2.2.1.1
ارفع إلى القوة .
خطوة 1.4.2.2.1.2
اضرب في .
خطوة 1.4.2.2.1.3
ارفع إلى القوة .
خطوة 1.4.2.2.1.4
اضرب في .
خطوة 1.4.2.2.1.5
اضرب في .
خطوة 1.4.2.2.2
بسّط بجمع الأعداد.
خطوة 1.4.2.2.2.1
أضف و.
خطوة 1.4.2.2.2.2
أضف و.
خطوة 1.4.2.2.2.3
أضف و.
خطوة 1.4.3
اسرِد جميع النقاط.
خطوة 2
استبعِد النقاط غير الموجودة في الفترة.
خطوة 3
خطوة 3.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 3.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 3.2.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2.2
بسّط النتيجة.
خطوة 3.2.2.1
بسّط كل حد.
خطوة 3.2.2.1.1
ارفع إلى القوة .
خطوة 3.2.2.1.2
اضرب في .
خطوة 3.2.2.1.3
اضرب في .
خطوة 3.2.2.2
بسّط بطرح الأعداد.
خطوة 3.2.2.2.1
اطرح من .
خطوة 3.2.2.2.2
اطرح من .
خطوة 3.2.2.3
الإجابة النهائية هي .
خطوة 3.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 3.3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.3.2
بسّط النتيجة.
خطوة 3.3.2.1
بسّط كل حد.
خطوة 3.3.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.3.2.1.2
اضرب في .
خطوة 3.3.2.1.3
اضرب في .
خطوة 3.3.2.2
بسّط عن طريق الجمع والطرح.
خطوة 3.3.2.2.1
أضف و.
خطوة 3.3.2.2.2
اطرح من .
خطوة 3.3.2.3
الإجابة النهائية هي .
خطوة 3.4
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 3.4.1
استبدِل المتغير بـ في العبارة.
خطوة 3.4.2
بسّط النتيجة.
خطوة 3.4.2.1
بسّط كل حد.
خطوة 3.4.2.1.1
ارفع إلى القوة .
خطوة 3.4.2.1.2
اضرب في .
خطوة 3.4.2.1.3
اضرب في .
خطوة 3.4.2.2
بسّط عن طريق الجمع والطرح.
خطوة 3.4.2.2.1
أضف و.
خطوة 3.4.2.2.2
اطرح من .
خطوة 3.4.2.3
الإجابة النهائية هي .
خطوة 3.5
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 3.6
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
خطوة 3.7
هذه هي القيم القصوى المحلية لـ .
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
هي حد أدنى محلي
خطوة 4
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
لا توجد نقطة قصوى مطلقة
الحد الأدنى المطلق:
خطوة 5