حساب التفاضل والتكامل الأمثلة

أوجد أين يكون dy/dx مساو للصفر 5x^3=-3xy+2
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
اضرب في .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2.3
أعِد كتابة بالصيغة .
خطوة 3.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.5
اضرب في .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
طبّق خاصية التوزيع.
خطوة 3.4.2
أضف و.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1.1
أخرِج العامل من .
خطوة 5.3.3.1.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1.2.1
أخرِج العامل من .
خطوة 5.3.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 5.3.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 5.3.3.1.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.2.1
أخرِج العامل من .
خطوة 5.3.3.1.2.2
انقُل العدد سالب واحد من قاسم .
خطوة 5.3.3.1.3
أعِد كتابة بالصيغة .
خطوة 5.3.3.1.4
اضرب في .
خطوة 5.3.3.1.5
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.5.1
أخرِج العامل من .
خطوة 5.3.3.1.5.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.5.2.1
أخرِج العامل من .
خطوة 5.3.3.1.5.2.2
ألغِ العامل المشترك.
خطوة 5.3.3.1.5.2.3
أعِد كتابة العبارة.
خطوة 5.3.3.1.6
انقُل السالب أمام الكسر.
خطوة 6
استبدِل بـ .
خطوة 7
عيّن ثم أوجِد قيمة بمعلومية .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 7.1.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 7.2
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
اضرب كل حد في في .
خطوة 7.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1.1.1
انقُل .
خطوة 7.2.2.1.1.2
اضرب في .
خطوة 7.2.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 7.2.2.1.2.2
ألغِ العامل المشترك.
خطوة 7.2.2.1.2.3
أعِد كتابة العبارة.
خطوة 7.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.3.1
اضرب في .
خطوة 7.3
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.1
أضف إلى كلا المتعادلين.
خطوة 7.3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.1
اقسِم كل حد في على .
خطوة 7.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 7.3.2.2.1.2
اقسِم على .
خطوة 7.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.2.3.1
انقُل السالب أمام الكسر.
خطوة 7.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 7.3.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 7.3.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 7.3.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 8
لا يمكن أن تحتوي قيم المحسوبة على مكونات تخيلية.
ليست قيمة صالحة لـ x
خطوة 9
لا يمكن أن تحتوي قيم المحسوبة على مكونات تخيلية.
ليست قيمة صالحة لـ x
خطوة 10
No points that set are on the real number plane.
No Points
خطوة 11