حساب التفاضل والتكامل الأمثلة

أوجد أين يكون dy/dx مساو للصفر y=x^2+7.5x+4
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
مشتق بالنسبة إلى يساوي .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.3
اضرب في .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.2
أضف و.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
استبدِل بـ .
خطوة 6
عيّن ثم أوجِد قيمة بمعلومية .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اطرح من كلا المتعادلين.
خطوة 6.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اقسِم كل حد في على .
خطوة 6.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.1.2
اقسِم على .
خطوة 6.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
اقسِم على .
خطوة 7
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
ارفع إلى القوة .
خطوة 7.1.2
اضرب في .
خطوة 7.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
اطرح من .
خطوة 7.2.2
أضف و.
خطوة 8
أوجِد النقاط حيث .
خطوة 9