حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد رأس القيمة المطلقة. في هذه الحالة، رأس هو .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لإيجاد الإحداثي للرأس، عيّن قيمة ما بين شريطَي القيمة المطلقة لتصبح مساوية لـ . في هذه الحالة، .
خطوة 1.2
استبدِل المتغير بـ في العبارة.
خطوة 1.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 1.3.2
أضف و.
خطوة 1.3.3
اقسِم على .
خطوة 1.4
رأس القيمة المطلقة هو .
خطوة 2
أوجِد نطاق بحيث يمكن انتقاء قائمة قيم لإيجاد قائمة النقاط، والتي ستساعد في تمثيل دالة القيمة المطلقة بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2.2
اطرح من كلا المتعادلين.
خطوة 2.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
لكل قيمة ، توجد قيمة واحدة. حدد بعض قيم من النطاق. سيكون من المفيد أكثر تحديد القيم بحيث تكون حول قيمة لرأس القيمة المطلقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
استبدِل المتغير بـ في العبارة.
خطوة 3.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.1.2.2
أضف و.
خطوة 3.1.2.3
اقسِم على .
خطوة 3.1.2.4
الإجابة النهائية هي .
خطوة 3.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.2.2.2
أضف و.
خطوة 3.2.2.3
الإجابة النهائية هي .
خطوة 3.3
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.3.2.2
أضف و.
خطوة 3.3.2.3
الإجابة النهائية هي .
خطوة 3.4
يمكن تمثيل القيمة المطلقة بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 4