إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
عيّن كدالة لـ .
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
أضف و.
خطوة 3
خطوة 3.1
اقسِم كل حد في على وبسّط.
خطوة 3.1.1
اقسِم كل حد في على .
خطوة 3.1.2
بسّط الطرف الأيسر.
خطوة 3.1.2.1
ألغِ العامل المشترك لـ .
خطوة 3.1.2.1.1
ألغِ العامل المشترك.
خطوة 3.1.2.1.2
اقسِم على .
خطوة 3.1.3
بسّط الطرف الأيمن.
خطوة 3.1.3.1
اقسِم على .
خطوة 3.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.3
بسّط .
خطوة 3.3.1
أعِد كتابة بالصيغة .
خطوة 3.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.3.3
زائد أو ناقص يساوي .
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.2
أضف و.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 5
خط المماس الأفقي في الدالة هو .
خطوة 6