حساب التفاضل والتكامل الأمثلة

أوجد خط المماس الأفقي f(x)=x^3+1
خطوة 1
أوجِد المشتق.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
أضف و.
خطوة 2
عيّن قيمة المشتق بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
اقسِم كل حد في على .
خطوة 2.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
ألغِ العامل المشترك.
خطوة 2.1.2.1.2
اقسِم على .
خطوة 2.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
اقسِم على .
خطوة 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أعِد كتابة بالصيغة .
خطوة 2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.3.3
زائد أو ناقص يساوي .
خطوة 3
أوجِد حل الدالة الأصلية عند .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.2.2
أضف و.
خطوة 3.2.3
الإجابة النهائية هي .
خطوة 4
خط المماس الأفقي في الدالة هو .
خطوة 5