إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
أوجِد المشتقة.
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
اضرب في .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
اضرب في .
خطوة 2
خطوة 2.1
اقسِم كل حد في على وبسّط.
خطوة 2.1.1
اقسِم كل حد في على .
خطوة 2.1.2
بسّط الطرف الأيسر.
خطوة 2.1.2.1
ألغِ العامل المشترك لـ .
خطوة 2.1.2.1.1
ألغِ العامل المشترك.
خطوة 2.1.2.1.2
اقسِم على .
خطوة 2.1.3
بسّط الطرف الأيمن.
خطوة 2.1.3.1
اقسِم على .
خطوة 2.2
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
القيمة الدقيقة لـ هي .
خطوة 2.4
اقسِم كل حد في على وبسّط.
خطوة 2.4.1
اقسِم كل حد في على .
خطوة 2.4.2
بسّط الطرف الأيسر.
خطوة 2.4.2.1
ألغِ العامل المشترك لـ .
خطوة 2.4.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.1.2
اقسِم على .
خطوة 2.4.3
بسّط الطرف الأيمن.
خطوة 2.4.3.1
اقسِم على .
خطوة 2.5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 2.6
أوجِد قيمة .
خطوة 2.6.1
بسّط.
خطوة 2.6.1.1
اضرب في .
خطوة 2.6.1.2
أضف و.
خطوة 2.6.2
اقسِم كل حد في على وبسّط.
خطوة 2.6.2.1
اقسِم كل حد في على .
خطوة 2.6.2.2
بسّط الطرف الأيسر.
خطوة 2.6.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.6.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.6.2.2.1.2
اقسِم على .
خطوة 2.7
أوجِد فترة .
خطوة 2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.7.4
ألغِ العامل المشترك لـ .
خطوة 2.7.4.1
ألغِ العامل المشترك.
خطوة 2.7.4.2
اقسِم على .
خطوة 2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 2.9
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
خطوة 3.1
خطوة 3.2
بسّط النتيجة.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.2.2
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 3.2.3
القيمة الدقيقة لـ هي .
خطوة 3.2.4
اضرب .
خطوة 3.2.4.1
اضرب في .
خطوة 3.2.4.2
اضرب في .
خطوة 3.2.5
الإجابة النهائية هي .
خطوة 4
خط المماس الأفقي في الدالة هو .
خطوة 5