حساب التفاضل والتكامل الأمثلة

أوجد خط المماس الأفقي x^4-3x^2+2
خطوة 1
أوجِد المشتق.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
أضف و.
خطوة 2
عيّن قيمة المشتق بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
أخرِج العامل من .
خطوة 2.1.3
أخرِج العامل من .
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.2.1.2
اقسِم على .
خطوة 2.4.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.4.2.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.4.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.4.2
اضرب في .
خطوة 2.4.2.4.3
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.4.3.1
اضرب في .
خطوة 2.4.2.4.3.2
ارفع إلى القوة .
خطوة 2.4.2.4.3.3
ارفع إلى القوة .
خطوة 2.4.2.4.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.4.2.4.3.5
أضف و.
خطوة 2.4.2.4.3.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.4.3.6.1
استخدِم لكتابة في صورة .
خطوة 2.4.2.4.3.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.4.2.4.3.6.3
اجمع و.
خطوة 2.4.2.4.3.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.4.3.6.4.1
ألغِ العامل المشترك.
خطوة 2.4.2.4.3.6.4.2
أعِد كتابة العبارة.
خطوة 2.4.2.4.3.6.5
احسِب قيمة الأُس.
خطوة 2.4.2.4.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.4.4.1
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 2.4.2.4.4.2
اضرب في .
خطوة 2.4.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
أوجِد حل الدالة الأصلية عند .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.2.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.2.1.3
اضرب في .
خطوة 3.2.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
أضف و.
خطوة 3.2.2.2
أضف و.
خطوة 3.2.3
الإجابة النهائية هي .
خطوة 4
أوجِد حل الدالة الأصلية عند .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
طبّق قاعدة الضرب على .
خطوة 4.2.1.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.2.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.2.1.1
استخدِم لكتابة في صورة .
خطوة 4.2.1.2.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.1.2.1.3
اجمع و.
خطوة 4.2.1.2.1.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.2.1.4.1
أخرِج العامل من .
خطوة 4.2.1.2.1.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.2.1.4.2.1
أخرِج العامل من .
خطوة 4.2.1.2.1.4.2.2
ألغِ العامل المشترك.
خطوة 4.2.1.2.1.4.2.3
أعِد كتابة العبارة.
خطوة 4.2.1.2.1.4.2.4
اقسِم على .
خطوة 4.2.1.2.2
ارفع إلى القوة .
خطوة 4.2.1.3
ارفع إلى القوة .
خطوة 4.2.1.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.4.1
أخرِج العامل من .
خطوة 4.2.1.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.4.2.1
أخرِج العامل من .
خطوة 4.2.1.4.2.2
ألغِ العامل المشترك.
خطوة 4.2.1.4.2.3
أعِد كتابة العبارة.
خطوة 4.2.1.5
طبّق قاعدة الضرب على .
خطوة 4.2.1.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.6.1
استخدِم لكتابة في صورة .
خطوة 4.2.1.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.1.6.3
اجمع و.
خطوة 4.2.1.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.6.4.1
ألغِ العامل المشترك.
خطوة 4.2.1.6.4.2
أعِد كتابة العبارة.
خطوة 4.2.1.6.5
احسِب قيمة الأُس.
خطوة 4.2.1.7
ارفع إلى القوة .
خطوة 4.2.1.8
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.8.1
أخرِج العامل من .
خطوة 4.2.1.8.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.8.2.1
أخرِج العامل من .
خطوة 4.2.1.8.2.2
ألغِ العامل المشترك.
خطوة 4.2.1.8.2.3
أعِد كتابة العبارة.
خطوة 4.2.1.9
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.9.1
اجمع و.
خطوة 4.2.1.9.2
اضرب في .
خطوة 4.2.1.10
انقُل السالب أمام الكسر.
خطوة 4.2.2
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اضرب في .
خطوة 4.2.2.2
اضرب في .
خطوة 4.2.2.3
اكتب على هيئة كسر قاسمه .
خطوة 4.2.2.4
اضرب في .
خطوة 4.2.2.5
اضرب في .
خطوة 4.2.2.6
اضرب في .
خطوة 4.2.3
اجمع البسوط على القاسم المشترك.
خطوة 4.2.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.1
اضرب في .
خطوة 4.2.4.2
اضرب في .
خطوة 4.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.5.1
اطرح من .
خطوة 4.2.5.2
أضف و.
خطوة 4.2.5.3
انقُل السالب أمام الكسر.
خطوة 4.2.6
الإجابة النهائية هي .
خطوة 5
خطوط المماس الأفقية في الدالة هي .
خطوة 6