حساب التفاضل والتكامل الأمثلة

أوجد خط المماس الأفقي (y-2)^2=4(x-3)
خطوة 1
Solve the equation as in terms of .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.2
أخرِج الحدود من تحت الجذر.
خطوة 1.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 1.3.2
أضف إلى كلا المتعادلين.
خطوة 1.3.3
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 1.3.4
أضف إلى كلا المتعادلين.
خطوة 1.3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2
Set each solution of as a function of .
خطوة 3
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة المتعادلين.
خطوة 3.2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أعِد كتابة بالصيغة .
خطوة 3.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
طبّق خاصية التوزيع.
خطوة 3.2.2.2
طبّق خاصية التوزيع.
خطوة 3.2.2.3
طبّق خاصية التوزيع.
خطوة 3.2.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1.1
اضرب في .
خطوة 3.2.3.1.2
انقُل إلى يسار .
خطوة 3.2.3.1.3
اضرب في .
خطوة 3.2.3.2
اطرح من .
خطوة 3.2.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.6
أعِد كتابة بالصيغة .
خطوة 3.2.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.8
أعِد كتابة بالصيغة .
خطوة 3.2.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.10
أضف و.
خطوة 3.3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.5.1
أضف و.
خطوة 3.3.5.2
اضرب في .
خطوة 3.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 3.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1.1
أخرِج العامل من .
خطوة 3.5.1.2
أخرِج العامل من .
خطوة 3.5.1.3
أخرِج العامل من .
خطوة 3.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1
اقسِم كل حد في على .
خطوة 3.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.5.2.2.1.2
أعِد كتابة العبارة.
خطوة 3.5.2.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.2.1
ألغِ العامل المشترك.
خطوة 3.5.2.2.2.2
اقسِم على .
خطوة 3.5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.3.1.1
أخرِج العامل من .
خطوة 3.5.2.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.3.1.2.1
ألغِ العامل المشترك.
خطوة 3.5.2.3.1.2.2
أعِد كتابة العبارة.
خطوة 3.6
استبدِل بـ .
خطوة 4
عيّن قيمة المشتق بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 4.2
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 5
لا يوجد حل بتعيين قيمة المشتق لتصبح مساوية لـ ، ، إذن لا توجد خطوط مماس أفقية.
لم يتم العثور على خطوط مماس أفقية
خطوة 6