إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.3
اجمع و.
خطوة 1.1.4
اجمع البسوط على القاسم المشترك.
خطوة 1.1.5
بسّط بَسْط الكسر.
خطوة 1.1.5.1
اضرب في .
خطوة 1.1.5.2
اطرح من .
خطوة 1.1.6
اجمع الكسور.
خطوة 1.1.6.1
انقُل السالب أمام الكسر.
خطوة 1.1.6.2
اجمع و.
خطوة 1.1.6.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.10
اجمع الكسور.
خطوة 1.1.10.1
أضف و.
خطوة 1.1.10.2
اجمع و.
خطوة 1.1.10.3
اضرب في .
خطوة 1.1.10.4
اجمع و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
اقسِم كل حد في على وبسّط.
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اقسِم على .
خطوة 3
خطوة 3.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
خطوة 3.1.1
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 3.1.2
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 3.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.3
أوجِد قيمة .
خطوة 3.3.1
لحذف الجذر في المتعادل الأيسر، كعِّب كلا المتعادلين.
خطوة 3.3.2
بسّط كل متعادل.
خطوة 3.3.2.1
استخدِم لكتابة في صورة .
خطوة 3.3.2.2
بسّط الطرف الأيسر.
خطوة 3.3.2.2.1
بسّط .
خطوة 3.3.2.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.3.2.2.1.2
ارفع إلى القوة .
خطوة 3.3.2.2.1.3
اضرب الأُسس في .
خطوة 3.3.2.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.2.2.1.3.2
ألغِ العامل المشترك لـ .
خطوة 3.3.2.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 3.3.2.2.1.4
بسّط.
خطوة 3.3.2.2.1.5
طبّق خاصية التوزيع.
خطوة 3.3.2.2.1.6
اضرب في .
خطوة 3.3.2.3
بسّط الطرف الأيمن.
خطوة 3.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.3.3
أوجِد قيمة .
خطوة 3.3.3.1
أضف إلى كلا المتعادلين.
خطوة 3.3.3.2
اقسِم كل حد في على وبسّط.
خطوة 3.3.3.2.1
اقسِم كل حد في على .
خطوة 3.3.3.2.2
بسّط الطرف الأيسر.
خطوة 3.3.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.2.1.2
اقسِم على .
خطوة 3.3.3.2.3
بسّط الطرف الأيمن.
خطوة 3.3.3.2.3.1
اقسِم على .
خطوة 3.3.3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.3.3.4
بسّط .
خطوة 3.3.3.4.1
أعِد كتابة بالصيغة .
خطوة 3.3.3.4.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.3.3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.3.3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.3.3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.3.3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.4
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.2
اطرح من .
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
بسّط العبارة.
خطوة 4.2.2.1.1
ارفع إلى القوة .
خطوة 4.2.2.1.2
اطرح من .
خطوة 4.2.2.1.3
أعِد كتابة بالصيغة .
خطوة 4.2.2.1.4
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2.2
ألغِ العامل المشترك لـ .
خطوة 4.2.2.2.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.2
أعِد كتابة العبارة.
خطوة 4.2.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.3
احسِب القيمة في .
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط.
خطوة 4.3.2.1
بسّط العبارة.
خطوة 4.3.2.1.1
ارفع إلى القوة .
خطوة 4.3.2.1.2
اطرح من .
خطوة 4.3.2.1.3
أعِد كتابة بالصيغة .
خطوة 4.3.2.1.4
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2.2
ألغِ العامل المشترك لـ .
خطوة 4.3.2.2.1
ألغِ العامل المشترك.
خطوة 4.3.2.2.2
أعِد كتابة العبارة.
خطوة 4.3.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.4
اسرِد جميع النقاط.
خطوة 5