حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة الجذر التربيعي لـ x^2+1-x
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
استخدِم لكتابة في صورة .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.2.7
اجمع و.
خطوة 1.1.2.8
اجمع البسوط على القاسم المشترك.
خطوة 1.1.2.9
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.9.1
اضرب في .
خطوة 1.1.2.9.2
اطرح من .
خطوة 1.1.2.10
انقُل السالب أمام الكسر.
خطوة 1.1.2.11
أضف و.
خطوة 1.1.2.12
اجمع و.
خطوة 1.1.2.13
اجمع و.
خطوة 1.1.2.14
اجمع و.
خطوة 1.1.2.15
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.2.16
ألغِ العامل المشترك.
خطوة 1.1.2.17
أعِد كتابة العبارة.
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
لا يوجد حل
لا يوجد حل
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة